Description
一个长度为len(1<=len<=1000000)的顺序表,数据元素的类型为整型,将该表分成两半,前一半有m个元素,后一半有len-m个元素(1<=m<=len),借助元素移位的方式,设计一个空间复杂度为O(1)的算法,改变原来的顺序表,把顺序表中原来在前的m个元素放到表的后段,后len-m个元素放到表的前段。
注意:先将顺序表元素调整为符合要求的内容后,再做输出,输出过程只能用一个循环语句实现,不能分成两个部分。
Input
第一行输入整数n,代表下面有n行输入;
之后输入n行,每行先输入整数len与整数m(分别代表本表的元素总数与前半表的元素个数),之后输入len个整数,代表对应顺序表的每个元素。
Output
输出有n行,为每个顺序表前m个元素与后(len-m)个元素交换后的结果
Sample
Input
2 10 3 1 2 3 4 5 6 7 8 9 10 5 3 10 30 20 50 80
Output
4 5 6 7 8 9 10 1 2 3 50 80 10 30 20
Hint
注意:先将顺序表元素调整为符合要求的内容后,再做输出,输出过程只能在一次循环中完成,不能分成两个部分输出。
#include <iostream>
#include<bits/stdc++.h>
using namespace std;
int a[2000005] = {0};
void change(int a[], int len, int m)
{
for(int i = 1; i <= m; i++)
{
a[i + len] = a[i];
}
for(int i = m + 1; i <= len + m; i++)
{
a[i - m] = a[i];
}
}
void prin(int a[], int n)
{
for(int i = 1; i <= n; i++)
{
if(i == n)printf("%d\n", a[i]);
else printf("%d ", a[i]);
}
}
int main()
{
int n, len, m;
scanf("%d", &n);
while(n--)
{
scanf("%d %d", &len, &m);
for(int i = 1; i <= len; i++)
{
scanf("%d", &a[i]);
}
change(a, len, m);
prin(a, len);
}
return 0;
}