Description
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
图1
图2
现给定两棵树,请你判断它们是否是同构的。
Input
输入数据包含多组,每组数据给出2棵二叉树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出”-”。给出的数据间用一个空格分隔。
注意:题目保证每个结点中存储的字母是不同的。
注意:题目保证每个结点中存储的字母是不同的。
Output
如果两棵树是同构的,输出“Yes”,否则输出“No”。
Sample
Input
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
Output
Yes
Hint
测试数据对应图1
#define maxSize 15
#include<iostream>
#include<bits/stdc++.h>
#include<string.h>
using namespace std;
typedef struct
{
char data;
int l, r;
}BT;
BT t1[maxSize], t2[maxSize];
int check(int i, int j)
{
if(t1[t1[i].l].data == t2[t2[j].l].data && t1[t1[i].r].data == t2[t2[j].r].data)return 1;
if(t1[t1[i].l].data == t2[t2[j].r].data && t1[t1[i].r].data == t2[t2[j].l].data)return 1;
return 0;
}
int main()
{
int n, m, flag, j, k;
char a, b, c;
while(scanf("%d", &n) != EOF)
{
flag = 1;
for(int i = 0; i < n; i++)
{
getchar();
scanf("%c %c %c", &a, &b, &c);
t1[i].data = a;
if(b != '_')
{
t1[i].l = b - '0';
}
else
{
t1[i].l = -1;;
}
if(c != '_')
{
t1[i].r = c - '0';
}
else
{
t1[i].r = -1;;
}
}
scanf("%d", &m);
for(int i = 0; i < m; i++)
{
getchar();
scanf("%c %c %c", &a, &b, &c);
t2[i].data = a;
if(b != '_')
{
t2[i].l = b - '0';
}
else
{
t2[i].l = -1;;
}
if(c != '_')
{
t2[i].r = c - '0';
}
else
{
t2[i].r = -1;;
}
}
if(n != m)
{
printf("No\n");
continue;
}
for(j = 0; j < n; j++)
{
for(k = 0; k < m; k++)
{
if(t1[j].data == t2[k].data)
{
if(check(j, k) == 1)
{
break;
}
}
}
if(k == m)
{
flag = 0;
break;
}
}
if(flag == 1)printf("Yes\n");
else printf("No\n");
}
return 0;
}