看文献过程中不断发现有太多不懂的基础知识,故长期更新这类blog不断补充在这过程中学到的知识。由于这些内容与我的研究方向并不一定强相关,故记录不会很深入请见谅。
【通信基础知识补充9】25年5月通信基础知识补充1
一、Jake’s模型原理详解
1.1 瑞利衰落
在移动无线通信环境中,信号传播通常伴随显著的多径效应。由于建筑物、地面及其他障碍物对无线电波的反射、散射与绕射,发射信号在传播过程中会形成多条路径,每条路径具有不同的传播时延与入射角,最终以叠加形式到达接收端。
当通信环境中缺乏占主导的视距路径(Line-of-Sight, LOS),如在高密度城区或地下空间,各径信号的幅度通常相近,且其相位由于路径差异呈现随机性叠加,进而导致瑞利衰落(Rayleigh fading)现象。
在统计建模中,若复信道增益的实部与虚部均为零均值、方差相等、彼此独立的高斯随机变量,则其包络服从瑞利分布。这一模型很好地刻画了NLOS场景下的信道统计特性,因此广泛用于建模城市环境、室内通信及非直视微波链路等系统。

在Clarke经典模型(1968年)中,假设移动终端被大量等效散射体环绕,来波方向在水平面上呈各向同性均匀分布,且各径平均功率相等。基于该模型可推导出瑞利包络分布、Jakes频谱形状、以及信道自相关函数等关键统计特性,也为后续TDL(Tapped Delay Line)多径模型提供理论基础。
1.2 多普勒频移
在上述“各向同性散射”模型下,接收机从多个方向接收到强度相近的多径信号,满足产生瑞利衰落所需的随机叠加条件。此时,多普勒效应成为引发小尺度衰落时间变化的主要因素:由于发射端、接收端或散射体存在相对运动,信号在每条路径上会经历不同程度的频率偏移,称为多普勒频移。
设载频为 f c f_c fc,接收机沿某方向以速度 v v v移动,则与该方向成角度 θ i \theta_i θi的第\i$条入射路径,其产生的多普勒频移为:
f i = f max cos ( θ i ) (1) f_i = f_{\text{max}} \cos(\theta_i) \tag{1} fi=fmaxcos(θi)(1)
其中:
- f i f_i fi:第 i i i条路径的多普勒频移;
- f max = v λ = v f _ c c f_{\text{max}} = \frac{v}{\lambda} = \frac{v f\_c}{c} fmax=λv=cvf_c:最大多普勒频移,$\lambda$为载波波长,$c$为光速;
- θ i \theta_i θi:该路径的入射角,相对于移动方向。
由该公式可知,多普勒频移的理论范围为 [ − f max , f max ] [ -f_{\max}, f_{\max} ] [−fmax,fmax],其数值依赖于各路径的入射角。
1.3 Jakes模型与功率谱
Jakes模型以公式(1)为基础,进一步考虑各向同性散射条件下,不同路径频移的概率分布特性。虽然频移范围是对称的 [ − f max , f max ] [-f_{\max}, f_{\max}] [−fmax,fmax],但其分布并非均匀,而是集中于边缘频率区域。最终形成典型的U形功率谱密度分布,即Jakes谱(经典多普勒谱):
S ( f ) = 1 π f max 1 − ( f / f max ) 2 , ∣ f ∣ ≤ f max (2) S(f) = \frac{1}{\pi f_{\max} \sqrt{1 - (f / f_{\max})^2}}, \quad |f| \le f_{\max} \tag{2} S(f)=πfmax1−(f/fmax)21,∣f∣≤fmax(2)
超过该范围( ∣ f ∣ > f max |f| > f_{\max} ∣f∣>fmax)时,功率谱密度为零。
由该表达式可见,频率靠近 ± f max \pm f_{\max} ±fmax时,功率谱密度迅速上升,理论上趋于无穷大(在实际中受限于系统带宽和滤波器响应)。这说明在移动通信系统中,由于各向同性散射的几何分布,信号频率更容易聚集在最大频移附近,而在中心频率(即零频移)附近相对较低。
Jakes谱广泛用于建模NLOS环境下移动通信信道的多普勒统计特性,在性能评估、调制方案设计、信道估计与跟踪算法仿真中发挥重要作用。该谱形不仅适用于瑞利衰落仿真,还可用于设计低复杂度的瑞利过程生成器(如八正弦波叠加方法等)。
需要强调的是,瑞利小尺度衰落通常与路径损耗、阴影衰落等大尺度效应叠加,共同决定无线信道特性。系统中的最大多普勒频移 f max f_{\max} fmax由接收机速度 v v v与载波频率 f c f_c fc共同决定:
这意味着:在高速移动场景中,信道在1秒内可能经历100次甚至更多的衰落起伏,表现为快速变化的深衰落(可达30–40 dB);而在低速场景中,信道变化则相对缓慢,更利于信道跟踪与反馈机制设计。
1.4 其他谱及应用场景总结
在无线信道建模中,多普勒功率谱用于描述移动场景下信号频率扩散特性,其频谱形状直接影响信道模型的准确性。其中,平坦谱(Flat Spectrum)以矩形频谱为特征,在频带
(
[
−
f
d
,
f
d
]
)
([-f_d, f_d])
([−fd,fd])内功率均匀分布,常用于理想化多普勒扩展的理论分析;Jakes谱(Jakes Spectrum)由经典移动信道模型衍生,其功率密度在最大多普勒频移
f
d
f_d
fd附近呈现尖峰特性
(
S
j
(
f
)
∝
1
/
1
−
(
f
/
f
d
)
2
)
(S_j(f) \propto 1/\sqrt{1-(f/f_d)^2})
(Sj(f)∝1/1−(f/fd)2),适用于高速移动引起的密集多普勒扩展场景(如城市环境);高斯谱(Gaussian Spectrum)则通过指数衰减函数
(
S
G
(
f
)
∝
e
−
(
f
/
f
d
)
2
)
(S_G(f) \propto e^{-(f/f_d)^2})
(SG(f)∝e−(f/fd)2)将能量集中于低频区域,更适合低速移动或复杂地形(如丘陵地区)下的平缓频移分布。三者分别从均匀、高频集中及低频主导的角度刻画了不同动态环境中的多普勒效应。
注:以下的图参考[1]
1.4.1 Jakes谱
- 适用场景:
- 高速移动环境(如90 mph车速的城市场景);
- 密集多径环境(如城市中高楼反射导致多普勒扩展显著);
- 经典移动通信模型(Bell实验室验证,能量集中于最大多普勒频移 f d f_d fd)。
- 理论依据:
Jakes谱的功率密度在 f d f_d fd附近最高,适用于接收端快速移动导致多普勒频移显著的情况(如车载通信、高速铁路)。
1.4.2 高斯谱
高斯谱的数学表达式为:
S
G
(
f
)
=
2
σ
2
π
f
d
2
exp
(
−
f
f
d
)
S_G(f) = \frac{2\sigma^2}{\sqrt{\pi} f_d^2} \exp\left(-\frac{f}{f_d}\right)
SG(f)=πfd22σ2exp(−fdf)
- 适用场景:
- 低速移动环境(如行人或低速车辆场景);
- 复杂地形(如丘陵地区,信号经多径散射后频移变化平缓);
- 低频主导的传播环境(如郊区或稀疏建筑区域)。
1.4.3 平坦谱
平坦频谱具有矩形形状。为了获得所需的过程带宽,需要进行适当的缩放和限带处理。平坦频谱由以下公式描述:
S
f
(
f
)
=
{
σ
2
/
f
d
,
−
f
d
<
f
<
f
d
0
,
其他情况
S_f(f) = \begin{cases} \sigma^2 / f_d, & -f_d < f < f_d \\ 0, & \text{其他情况} \end{cases}
Sf(f)={σ2/fd,0,−fd<f<fd其他情况
其中,
(
σ
2
)
(\sigma^2)
(σ2) 为总信号功率,
(
f
d
)
(f_d)
(fd) 为最大多普勒频率。
- 适用场景:
- 理论分析与基准测试(如理想化多普勒扩展模型);
- 实验室仿真(均匀频移分布便于简化计算);
- 不适用于实际工程(城市/丘陵地形中失真严重,性能最差)。
- 理论依据:
平坦谱在频带内均匀分布,缺乏实际环境中的频率选择性,仅作为对比参考。
1.4.4 总结对比
谱型 | 适用场景 | 性能优势 | 局限性 |
---|---|---|---|
Jakes | 高速城市、密集多径 | 高动态适应性 | 不适用于低速或平坦地形 |
高斯 | 低速城市、丘陵地形 | 低频稳定性 | 高速场景性能下降 |
平坦 | 理论研究 | 计算简单 | 实际工程中失真严重 |
1.5 matlab代码
1.5.1 绘制多普勒功率谱
clc; clear; close all;
% 参数定义
f_max = 100; % 最大多普勒频率 (Hz)
f = linspace(-f_max, f_max, 1000); % 频率轴
% 计算Jakes功率谱,避免除0
S = zeros(size(f));
idx = abs(f) < f_max; % 只对|f| < f_max有效
S(idx) = 1 ./ (pi * f_max * sqrt(1 - (f(idx)/f_max).^2));
% 绘图
figure('Color','w');
plot(f, S, 'LineWidth', 2);
xlabel('Frequency (Hz)');
ylabel('Power Spectral Density S(f)');
title('Jakes Doppler Power Spectrum');
grid on;
set(gca,'FontSize',12,'LineWidth',1.2);
axis tight;
仿真如下:

1.5.2 基于多径时延线性(TDL)模型和Jakes多普勒谱
clc; clear; close all;
%% 参数定义
fd = 100; % 最大多普勒频移 (Hz)
fs = 1500; % 采样率 (Hz)
duration = 1; % 模拟时长 (秒)
N = fs * duration; % 样本数
M = 32; % Jakes 正弦波数量
L = 4; % 路径数 (TDL taps)
tau = [0, 1, 2.5, 5] * 1e-3; % 各路径时延(秒)
pow_dB = [0 -3 -6 -9]; % 每条路径的功率(dB)
pow = 10.^(pow_dB/10); % 转换为线性
%% 初始化信道矩阵
h_TDL = zeros(L, N); % 每行表示一条路径的时变衰落 h_l(t)
%% 为每个tap生成瑞利过程
for l = 1:L
h = jakes_strict(fd, fs, duration, M); % 复高斯过程
h_TDL(l, :) = sqrt(pow(l)) * h; % 加权路径功率
end
%% 可视化:绘制每个tap的幅度变化
figure;
for l = 1:L
subplot(L,1,l);
plot((0:N-1)/fs, abs(h_TDL(l,:)));
xlabel('Time (s)'); ylabel(['|h_' num2str(l) '(t)|']);
title(['TDL Path ' num2str(l) ' Envelope']);
grid on;
end
figure;
for l = 1:L
% 计算第l条路径的PSD,使用pwelch函数
[psd, f] = pwelch(h_TDL(l,:), hamming(256), 128, 512, fs, 'centered');
% 绘制PSD(单位dB)
plot(f, 10*log10(psd + 1e-12)); hold on;
end
grid on;
xlabel('Frequency (Hz)');
ylabel('Power Spectral Density (dB/Hz)');
title('PSD of Each TDL Path (Rayleigh Fading)');
legend(arrayfun(@(x) ['Path ' num2str(x)], 1:L, 'UniformOutput', false));
%% 子函数
function r = jakes_strict(fd, fs, duration, M)
N = fs * duration;
t = (0:N-1) / fs;
n = 1:M;
theta_n = pi * n / (M + 1);
phi_n = 2 * pi * rand(1, M);
omega_n = 2 * pi * fd * cos(theta_n);
I = zeros(1, N);
Q = zeros(1, N);
for k = 1:M
I = I + cos(phi_n(k)) * cos(omega_n(k) * t);
Q = Q + sin(phi_n(k)) * cos(omega_n(k) * t);
end
r = sqrt(2/M) * (I + 1j * Q); % 复信道系数
end
仿真如下:
1.5.2.1 代码讲解:
上述代码严格遵循了Jakes模型的数学公式,通过分解复数形式的叠加为独立的同相(I)和正交(Q)分量来实现瑞利衰落信道的仿真。以下为具体对应关系及解释:
1. Jakes模型的原始公式
Jakes模型的复基带信道可表示为:
r
(
t
)
=
2
M
∑
n
=
1
M
e
j
ϕ
n
cos
(
ω
d
cos
θ
n
⋅
t
)
r(t) = \sqrt{\frac{2}{M}} \sum_{n=1}^{M} e^{j\phi_n} \cos\left( \omega_d \cos\theta_n \cdot t \right)
r(t)=M2n=1∑Mejϕncos(ωdcosθn⋅t)
其中:
- ω d = 2 π f d \omega_d = 2\pi f_d ωd=2πfd是最大多普勒角频率。
- θ n \theta_n θn是第(n)个入射波的到达角,均匀分布在([0, \pi))。
- ϕ n \phi_n ϕn是随机初始相位,均匀分布在([0, 2\pi))。
- M M M是正弦波分量的个数。
2. 代码实现与公式的对应关系
代码中的循环部分:
for k = 1:M
I = I + cos(phi_n(k)) * cos(omega_n(k) * t); % 同相分量
Q = Q + sin(phi_n(k)) * cos(omega_n(k) * t); % 正交分量
end
r = sqrt(2/M) * (I + 1j * Q); % 归一化生成复信号
对应到Jakes公式的分解过程如下:
-
复数形式的分解
Jakes公式中的复数指数项 e j ϕ n e^{j\phi_n} ejϕn可以分解为:
e j ϕ n = cos ϕ n + j sin ϕ n e^{j\phi_n} = \cos\phi_n + j\sin\phi_n ejϕn=cosϕn+jsinϕn
因此,复基带信号可展开为:
r ( t ) = 2 M ∑ n = 1 M [ cos ϕ n + j sin ϕ n ] cos ( ω n t ) r(t) = \sqrt{\frac{2}{M}} \sum_{n=1}^{M} \left[ \cos\phi_n + j\sin\phi_n \right] \cos(\omega_n t) r(t)=M2n=1∑M[cosϕn+jsinϕn]cos(ωnt)
其中, ω n = ω d cos θ n = 2 π f d cos θ n \omega_n = \omega_d \cos\theta_n = 2\pi f_d \cos\theta_n ωn=ωdcosθn=2πfdcosθn(对应代码中的omega_n(k)
)。 -
分离实部(I)和虚部(Q):
I ( t ) = ∑ n = 1 M cos ϕ n ⋅ cos ( ω n t ) I(t) = \sum_{n=1}^{M} \cos\phi_n \cdot \cos(\omega_n t) I(t)=n=1∑Mcosϕn⋅cos(ωnt)
Q ( t ) = ∑ n = 1 M sin ϕ n ⋅ cos ( ω n t ) Q(t) = \sum_{n=1}^{M} \sin\phi_n \cdot \cos(\omega_n t) Q(t)=n=1∑Msinϕn⋅cos(ωnt) -
归一化因子**
最终通过归一化确保信号功率为1:
r ( t ) = 2 M ( I ( t ) + j Q ( t ) ) r(t) = \sqrt{\frac{2}{M}} \left( I(t) + jQ(t) \right) r(t)=M2(I(t)+jQ(t))
代码中的sqrt(2/M)
与公式完全一致。
二、参考文献
[1] Singh, Swatantra Kumar and Ashish Xavier Das. “Channel modeling for Urban and Hilly terrain using Jakes, Gaussian and Flat spectrum for Ad-hoc network.” (2015).