几大经典的排序总结及代码实现

本文为学习总结性文章,借鉴了部分博主的内容,附上链接:
链接1
链接2

总结:
1.术语说明:
稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
内排序:所有排序操作都在内存中完成;
外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
时间复杂度: 一个算法执行所耗费的时间。
空间复杂度:运行完一个程序所需内存的大小。
2.几种常见排序的复杂度

在这里插入图片描述

3.几种算法分类
在这里插入图片描述

4.比较和非比较的区别
快速排序、归并排序、堆排序、冒泡排序等属于比较排序。每个数都必须和其他数进行比较,才能确定自己的位置。
在冒泡排序之类的排序中,问题规模为n,又因为需要比较n次,所以平均时间复杂度为O(n²)。在归并排序、快速排序之类的排序中,问题规模通过分治法消减为logN次,所以时间复杂度平均O(nlogn)。
比较排序的优势是,适用于各种规模的数据,也不在乎数据的分布,都能进行排序。可以说,比较排序适用于一切需要排序的情况。
计数排序、基数排序、桶排序则属于非比较排序。非比较排序是通过确定每个元素之前,应该有多少个元素来排序。针对数组arr,计算arr之前有多少个元素,则唯一确定了arr在排序后数组中的位置。
非比较排序只要确定每个元素之前的已有的元素个数即可,所有一次遍历即可解决。算法时间复杂度O(n)。
非比较排序时间复杂度低,但由于非比较排序需要占用空间来确定唯一位置。所以对数据规模和数据分布有一定的要求。

@1. 冒泡排序(Bubble Sort)
冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

过程描述:
1.比较相邻的元素。如果第一个比第二个大,就交换它们两个;
2.对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
3.针对所有的元素重复以上的步骤,除了最后一个;

代码实现:

public class Sort {
    public static void main(String[] args){
        int[] arr = {6,3,2,1,7};
        for(int i = 0;i<arr.length-1;i++){//外层循环n-1
            for(int j = 0;j<arr.length-i-1;j++){//内层循环n-i-1
                if(arr[j]>arr[j+1]){//从第一个开始,往后两两比较大小,如果前面的比后面的大,交换位置
                    int tmp = arr[j];
                    arr[j] = arr[j+1];
                    arr[j+1] = tmp;
                }
            }
        }
        System.out.println(Arrays.toString(arr));
    }


@2、选择排序(Selection Sort)
表现最稳定的排序算法之一,因为无论什么数据进去都是O(n2)的时间复杂度,所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序一般人想到的最多的排序方法了吧。
选择排序(Selection-sort)是一种简单直观的排序算法。

过程描述:
首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

public class SelectionSort {
    public void selectionSort(int[] array) {
        int temp;
        for (int i = 0; i < array.length - 1; i++) {
            for (int j = i + 1; j <= array.length - 1; j++) {// 第i个和第j个比较j可以取到最后一位,所以要用j<=array.length-1
                if (array[i] > array[j]) {// 注意和冒泡排序的区别,这里是i和j比较。
                    temp = array[i];
                    array[i] = array[j];
                    array[j] = temp;
                }
            }
            // 打印每趟排序结果
            for (int m = 0; m <= array.length - 1; m++) {
                System.out.print(array[m] + "\t");
            }
            System.out.println();
        }
    }
  
    public static void main(String[] args) {
        SelectionSort selectionSort = new SelectionSort();
        int[] array = { 5, 69, 12, 3, 56, 789, 2, 5648, 23 };
        selectionSort.selectionSort(array);
        for (int m = 0; m <= array.length - 1; m++) {
            System.out.print(array[m] + "\t");
        }
    }
}

3、插入排序(Insertion Sort)
插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

过程:
直接插入排序法的排序原则是:将一组无序的数字排列成一排,左端第一个数字为已经完成排序的数字,其他数字为未排序的数字。然后从左到右依次将未排序的数字插入到已排序的数字中。

代码:

public class InsertSort {
    public void insertSort(int[] array, int first, int last) {
        int temp, i, j;
        for (i = first + 1; i <= last - 1; i++) {// 默认以第一个数为有序序列,后面的数为要插入的数。
            temp = array[i];
            j = i - 1;
            while (j >= first && array[j] > temp) {// 从后进行搜索如果搜索到的数小于temp则该数后移继续搜索,直到搜索到小于或等于temp的数即可
                array[j + 1] = array[j];
                j--;
            }
            array[j + 1] = temp;
            // 打印每次排序结果
            for (int m = 0; m <= array.length - 1; m++) {
                System.out.print(array[m] + "\t");
            }
            System.out.println();
        }
    }
  
    public static void main(String[] args) {
        InsertSort insertSort = new InsertSort();
        int[] array = { 5, 69, 12, 3, 56, 789, 2, 5648, 23 };
        insertSort.insertSort(array, 0, array.length);// 注意此处是0-9而不是0-8
        for (int i = 0; i <= array.length - 1; i++) {
            System.out.print(array[i] + "\t");
        }
    }
}

@4、希尔排序(Shell Sort)
希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,该算法是冲破O(n2)的第一批算法之一。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。

过程:
先将整个待排元素序列分割成若干个子序列(由相隔某 个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插 入排序。因为直接插入排序在元素基本有序的情况下(接近最好情况),效率是很高的,因此希尔排序在时间效率上有较大提高。

public class ShellSort {
    public void shellSort(int[] array, int n) {
        int i, j, gap;
        int temp;
        for (gap = n / 2; gap > 0; gap /= 2) {// 计算gap大小
            for (i = gap; i < n; i++) {// 将数据进行分组
                for (j = i - gap; j >= 0 && array[j] > array[j + gap]; j -= gap) {// 对每组数据进行插入排序
                    temp = array[j];
                    array[j] = array[j + gap];
                    array[j + gap] = temp;
                }
                // 打印每趟排序结果
                for (int m = 0; m <= array.length - 1; m++) {
                    System.out.print(array[m] + "\t");
                }
                System.out.println();
            }
        }
    }
  
    public static void main(String[] args) {
        ShellSort shellSort = new ShellSort();
        int[] array = { 5, 69, 12, 3, 56, 789, 2, 5648, 23 };
        shellSort.shellSort(array, array.length);// 注意为数组的个数
        for (int m = 0; m <= array.length - 1; m++) {
            System.out.print(array[m] + "\t");
        }
    }
}

排序图解:
在这里插入图片描述

@5、归并排序(Merge Sort)
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(n log n)的时间复杂度。代价是需要额外的内存空间。
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

过程:
把序列分成元素尽可能相等的两半。
把两半元素分别进行排序。
把两个有序表合并成一个。

代码:

public class MergeSortTest {
    public void sort(int[] array, int left, int right) {
        if (left >= right)
            return;
        // 找出中间索引
        int center = (left + right) / 2;
        // 对左边数组进行递归
        sort(array, left, center);
        // 对右边数组进行递归
        sort(array, center + 1, right);
        // 合并
        merge(array, left, center, right);
        // 打印每次排序结果
        for (int i = 0; i < array.length; i++) {
            System.out.print(array[i] + "\t");
        }
        System.out.println();
  
    }
  
    /**
     * 将两个数组进行归并,归并前面2个数组已有序,归并后依然有序
     * 
     * @param array
     *            数组对象
     * @param left
     *            左数组的第一个元素的索引
     * @param center
     *            左数组的最后一个元素的索引,center+1是右数组第一个元素的索引
     * @param right
     *            右数组最后一个元素的索引
     */
    public void merge(int[] array, int left, int center, int right) {
        // 临时数组
        int[] tmpArr = new int[array.length];
        // 右数组第一个元素索引
        int mid = center + 1;
        // third 记录临时数组的索引
        int third = left;
        // 缓存左数组第一个元素的索引
        int tmp = left;
        while (left <= center && mid <= right) {
            // 从两个数组中取出最小的放入临时数组
            if (array[left] <= array[mid]) {
                tmpArr[third++] = array[left++];
            } else {
                tmpArr[third++] = array[mid++];
            }
        }
        // 剩余部分依次放入临时数组(实际上两个while只会执行其中一个)
        while (mid <= right) {
            tmpArr[third++] = array[mid++];
        }
        while (left <= center) {
            tmpArr[third++] = array[left++];
        }
        // 将临时数组中的内容拷贝回原数组中
        // (原left-right范围的内容被复制回原数组)
        while (tmp <= right) {
            array[tmp] = tmpArr[tmp++];
        }
    }
  
    public static void main(String[] args) {
        int[] array = new int[] { 5, 69, 12, 3, 56, 789, 2, 5648, 23 };
        MergeSortTest mergeSortTest = new MergeSortTest();
        mergeSortTest.sort(array, 0, array.length - 1);
        System.out.println("排序后的数组:");
        for (int m = 0; m <= array.length - 1; m++) {
            System.out.print(array[m] + "\t");
        }
    }
}

@6、快速排序(Quick Sort)
快速排序(Quicksort)是对冒泡排序的一种改进。由C. A. R. Hoare在1962年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然 后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

过程:
快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:
从数列中挑出一个元素,称为 “基准”(pivot);
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

代码:

public class QuickSort {
    public int partition(int[] sortArray, int low, int height) {
        int key = sortArray[low];// 刚开始以第一个数为标志数据
        while (low < height) {
            while (low < height && sortArray[height] >= key)
                height--;// 从后面开始找,找到比key值小的数为止
            sortArray[low] = sortArray[height];// 将该数放到key值的左边
            while (low < height && sortArray[low] <= key)
                low++;// 从前面开始找,找到比key值大的数为止
            sortArray[height] = sortArray[low];// 将该数放到key值的右边
        }
        sortArray[low] = key;// 把key值填充到low位置,下次重新找key值
        // 打印每次排序结果
        for (int i = 0; i <= sortArray.length - 1; i++) {
            System.out.print(sortArray[i] + "\t");
        }
        System.out.println();
        return low;
    }
  
    public void sort(int[] sortArray, int low, int height) {
        if (low < height) {
            int result = partition(sortArray, low, height);
            sort(sortArray, low, result - 1);
            sort(sortArray, result + 1, height);
        }
    }
  
    public static void main(String[] args) {
        QuickSort quickSort = new QuickSort();
        int[] array = { 5, 69, 12, 3, 56, 789, 2, 5648, 23 };
        for (int i = 0; i <= array.length - 1; i++) {
            System.out.print(array[i] + "\t");
        }
        System.out.println();
        quickSort.sort(array, 0, 8);
        for (int i = 0; i <= array.length - 1; i++) {
            System.out.print(array[i] + "\t");
        }
    }
}

@7、堆排序(Heap Sort)
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
过程:
将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

public class Sort {
    public static void main(String[] args) {
        int[] nums = {16,7,3,20,17,8};
        headSort(nums);
        for (int num : nums) {
            System.out.print(num + " ");
        }
    }

    /**
     * 堆排序
     */
    public static void headSort(int[] list) {
        //构造初始堆,从第一个非叶子节点开始调整,左右孩子节点中较大的交换到父节点中
        for (int i = (list.length) / 2 - 1; i >= 0; i--) {
            headAdjust(list, list.length, i);
        }
        //排序,将最大的节点放在堆尾,然后从根节点重新调整
        for (int i = list.length - 1; i >= 1; i--) {
            int temp = list[0];
            list[0] = list[i];
            list[i] = temp;
            headAdjust(list, i, 0);
        }
    }
    
    private static void headAdjust(int[] list, int len, int i) {
        int k = i, temp = list[i], index = 2 * k + 1;
        while (index < len) {
            if (index + 1 < len) {
                if (list[index] < list[index + 1]) {
                    index = index + 1;
                }
            }
            if (list[index] > temp) {
                list[k] = list[index];
                k = index;
                index = 2 * k + 1;
            } else {
                break;
            }
        }
        list[k] = temp;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值