数论分块
three trees
三木无林,却以成森
展开
-
数论分块——学习
牛客-数论之神(引子) bzoj 1257 1968 2956原创 2019-09-18 21:57:18 · 141 阅读 · 0 评论 -
洛谷-P2257 YY的GCD
洛谷-P2257 分析 本题需要前置知识:数论分块,莫比乌斯反演 数论分块,可看https://blog.csdn.net/qq_43101466/article/details/100999784 先介绍一下莫比乌斯函数 μ(n)={1n为1(−1)kk为n的质因子个数0n存在非平方因子 {\displaystyle \mu (n)= {\begin{cases} 1 \quad n为1\\ (...原创 2019-09-20 18:45:24 · 157 阅读 · 0 评论 -
洛谷-P4450双亲数
题意 求 ans=∑i=1A∑j=1B[gcd(i,j)==d]ans = \sum_{i = 1}^{A}\sum_{j = 1}^{B}[\gcd(i, j) == d]ans=∑i=1A∑j=1B[gcd(i,j)==d] 分析 我们发现酷似洛谷P2257,题题解链接: https://blog.csdn.net/qq_43101466/article/details/101...原创 2019-09-22 21:36:20 · 167 阅读 · 0 评论 -
hdu 1695 GCD
开始推式子 ans=∑x=ab∑y=cd[gcd(x,y)=k] \begin{aligned} ans = \sum_{x=a}^{b}\sum_{y=c}^{d}[\gcd(x,y)=k] \end{aligned} ans=x=a∑by=c∑d[gcd(x,y)=k] 还是老套路,我们令 f(k)=∑x=ab∑y=cd[gcd(x,y)=k]f(k)=\sum_{x=a}^{b}...原创 2019-09-24 21:58:27 · 100 阅读 · 0 评论 -
洛谷-P1829 Crash的数字表格--积性函数
推式子 ans=∑i=1N∑j=1Mlcm(i,j)=∑i=1N∑j=1Mi∗jgcd(i,j) \begin{aligned} ans = \sum_{i=1}^{N}\sum_{j=1}^{M}lcm(i,j) = \sum_{i=1}^{N}\sum_{j=1}^{M}\frac{i*j}{\gcd(i,j)} \end{aligned} ans=i=1∑Nj=1∑Mlcm(i,j)...原创 2019-09-25 21:00:44 · 209 阅读 · 1 评论 -
gym-101982B 2018-2019 ACM-ICPC Pacific Northwest 反演
推式子 ans=∑i=ab∑j=cd[gcd(i,j)==1] \begin{aligned} ans= \sum_{i=a}^{b}\sum_{j=c}^{d}[\gcd(i,j)==1] \end{aligned} ans=i=a∑bj=c∑d[gcd(i,j)==1] 我们给(a,b)(a,b)(a,b)拆成(1,b)−(1,a−1)(1,b)-(1,a-1)(1,b)−(1,a−1...原创 2019-10-06 22:03:11 · 131 阅读 · 0 评论