堆排序
实现堆排序的前提是实现优先队列
优先队列
优先队列是一种抽象数据类型,它的功能是添加数据和弹出最大的数据
我们使用二叉堆实现优先队列
二叉堆
在二叉堆里,我们需要保证每一个元素都要大于特定位置的元素,我们把它画成二叉树来表示
对于任意一节点N,若它的下标为k,那么它的父节点下标为k/2,子节点下标为2k和2k+1
我们使用长度为n+1的数组来实现可容纳N个数据的二叉堆(不使用数组里下标为0的位置)
代码实现(有详细的注释)
package com.z_others.sort;
public class MaxPqUseHeap {
int[] nums;
int n=0;
public MaxPqUseHeap(int N){
//创建大小为N+1的堆
nums = new int[N+1];
}
//插入元素
public void insert(int num){
nums[++n] = num;
//由于是从数组后端插入的元素,所以重下到上构造堆
swim(n);
}
//弹出最大元素
public int pop(){
int max = nums[1];
swap(1,n--);
//由于更新了第一个元素,所以从上至下构造堆
sink(1);
return max;
}
//工具部分
public void swap(int i,int j){
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
public boolean isEmpty(){
return 0==n;
}
//从下至上构造堆
public void swim(int k){
//如果位置为k的元素比它的父节点大就交换
while (k>1 && nums[k]>nums[k/2]) {
swap(k,k/2);
k = k/2;
}
}
//从上至下构造堆
public void sink(int k){
int j;
while (2*k <= n){
j = 2*k;
//j要小于数组的最后一个下标,因为最后一个下标存储
//的数字已经弹出
if (j<n && nums[j] < nums[j+1]) j++;
if (nums[k] < nums[j]){
swap(k,j);
}
k = j;
}
}
}
堆排序
使用堆实现优先队列基本就是上面那样,现在我们来实现堆排序
将输入的数组构造成堆,然后每次把最大的元素与数组的最后面的元素交换,然后把剩下的元素继续构造成堆,反复执行直到数组全部有序为止
代码实现
package com.z_others.sort;
public class HeapSort {
public static void sort(int[] nums){
int N = nums.length - 1;
for (int i = 1; i < nums.length; i++) {
swim(nums,i);
}
while (N>1){
swap(nums,1,N--);
sink(nums,1,N);
}
}
public static void swim(int[] nums,int k){
while (k>1 && nums[k/2]<nums[k]){
swap(nums,k,k/2);
k = k/2;
}
}
public static void sink(int[] nums,int k,int end){
int j;
while (k*2 <= end){
j = 2*k;
if (j<end && nums[j]<nums[j+1]) j++;
if (nums[k]<nums[j]) swap(nums,k,j);
k = j;
}
}
public static void swap(int[] nums,int i,int j){
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}