机器学习从入门到入职笔记
火吻而生
这个作者很懒,什么都没留下…
展开
-
4.3.3范数规范化
范数基本概念这里不予赘述,L0,L1,L2和无穷范数范数规范化代码如下from sklearn import preprocessingimport numpy as np# 原始数据XX = np.array([[3, -2., 2.], [2., 0., 0.], [-1, 1., 3.]]) # 按行表示,按列计算# 范数规范化的函数化实现,其中规范化系数norm为L2,还有其他形式,诸如L1,maxX_norm=preprocessing.normalize(X,norm='原创 2021-09-16 17:50:02 · 327 阅读 · 0 评论 -
笔记4.3.2标准化
标准化又称标准差规范化或Z标准化(Z_Score Normalization),对样本每个特征分别进行计算使其满足正态分布--均值0、标准差1,# 引用相应的库,numpy用于生成缺失值,引用sklearn.processing库,其中包含绝大部分的数据与处理方法from sklearn import preprocessingimport numpy as np# 原始数据XX=np.array([[3,-2.,2.],[2.,0.,0.],[1,2.,3.]])# 初始化数据预处理器,用原创 2021-09-15 17:06:07 · 312 阅读 · 0 评论 -
笔记4.3.1缩放规范化--最小值最大值缩放和最大绝对值缩放
Min-Max scaling将该样本每个特征下的最大值与最小值之差作为缩放倍数,每个特征下没有任何一个数会超过其最值之差,所以作为分母;分子是每个特征下的值与最小值之差。全为0的特征,缩放后值为0.代码表现如下:# 引用相应的库,numpy用于生成缺失值,引用sklearn.processing库,其中包含绝大部分数据与处理方法from sklearn import preprocessingimport numpy as np# 原始数据XX = np.array([[3, -2., 2原创 2021-09-15 10:57:16 · 2302 阅读 · 0 评论 -
笔记4.2SimpleImputer缺失值处理
机器学习从入门到入职--用sklearn与Keras搭建人工智能模型第四章4.1根据样本之间关联关系,及数据的行和列,用SimpleImputer方法进行缺失值处理,策略有均值插补、中位数插补和高频数插补。例子如下:#引用相应的库,numpy用于生成缺失值,sklearn.impute库中的simpleimputer方法用预处理缺失值import Numpy as npfrom sklearn.impute import SimpleImputer#初始化缺失值处理器,指定缺失值参数miss原创 2021-09-14 16:00:19 · 1430 阅读 · 0 评论