题目描述:
给你一个下标从 1 开始的整数数组numbers ,该数组已按 非递减顺序排列 ,请你从数组中找出满足相加之和等于目标数target 的两个数。如果设这两个数分别是 numbers[index1] 和 numbers[index2],
则 1 <= index1 < index2 <= numbers.length。
以长度为 2 的整数数组 [index1, index2] 的形式返回这两个整数的下标 index1 和 index2。
你可以假设每个输入 只对应唯一的答案 ,而且你 不可以 重复使用相同的元素。
你所设计的解决方案必须只使用常量级的额外空间。
示例 2:
输入:numbers = [2,3,4], target = 6
输出:[1,3]
解释:2 与 4 之和等于目标数 6 。因此 index1 = 1, index2 = 3 。返回 [1, 3] 。
示例 3:
输入:numbers = [-1,0], target = -1
输出:[1,2]
解释:-1 与 0 之和等于目标数 -1 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。
输入:numbers = [2,7,11,15], target = 9
输出:[1,2]
解释:2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。
二分查找:
首先我们要明确我们是要在这个数组中找出符合要求的两个数字,如果我们使用二分查找的话,那么我们也只能在找一个数字的时候使用二分查找(此处我们是在找第二个数字的时候使用二分查找,第一个数字是遍历查找,因为要使用第一个数字定位第二个数字的位置。)
class Solution:
def twoSum(self, numbers: list, target: int) -> list:#pass
n = len(numbers)
for i in range(n):# i是第一个数字的下标
left,right = i+1,n-1 #我们要从第一个数字后面开始去找,所以定的范围是i+1,n-1
while left <= right: # 这里为什么是left<right呢?因为在锁定搜索范围的时候可能左边界与右边界相遇,此时mid就是相遇的点,如果是left<right,就有可能忽略相遇的点
mid = (left+right)//2
if numbers[mid] == target - numbers[i]:
return [i+1,mid+1]
elif numbers[mid] > target - numbers[i]:
right = mid -1
else:
left = mid + 1
return [-1,-1]
双指针法:
看官方说了一大堆,其实就是找两个指针,这里呢就是两个下标。因为这里给的数组是非递减顺序排列的,即number[n+1] >= number[n]。这样呢,我们就先定义首尾两个指针一个指向列表头,一个指向列表尾部。判断这两个指针指向的元素之和与target的关系,如果是刚好相等,那就直接返回对应的下标序号,如果是两个元素之和小于target,说明left指针要右移,同理,right要往左移。
def twoSum1(self, numbers: list, target: int) -> list:# pass
n = len(numbers) -1
left,right = 0,n
while left < right:#因为这里我们不取同位置的元素,所以left<right,如果可以取同位置的元素,那么就是left<=right
if numbers[left] + numbers[right] == target:
return [left+1,right+1]
elif numbers[left] + numbers[right] < target:
left += 1
else:
right -= 1
return [-1,-1]