计算机视觉
文章平均质量分 89
计算机视觉相关技术或应用
Chiak1
NEU Software 2018级本科
机器学习、深度学习、大数据领域
展开
-
SPP-Net与空间金字塔池化详解
文章目录一、`R-CNN`的不足与改进R-CNN的问世让卷积神经网络在目标检测领域崭露头角,尽管它具有不俗的准确率,但是其检测效率过于低下,以至于很难得到实际的应用。为了提高R-CNN的检测效率,SSP-Net与空间金字塔池化Spatial Pyramid Pooling, SSP应运而生。一、R-CNN的不足与改进 R-CNN模型进行目标检测的效率很低,不仅训练过程十分繁琐,检测过程也是非常的慢。其原因之一就是生成的约2000个候选区域需要一个一个地输入卷积神经网络以进行特征提取,而这一过程则原创 2021-03-23 20:36:23 · 667 阅读 · 0 评论 -
目标检测模型(一):R-CNN
文章目录一、R-CNN二、生成候选区域三、特征提取四、区域分类R-CNN目标检测模型被称为将卷积神经网络引入目标检测的开山之作,尽管现在看来其性能早已达不到应用的标准,但是它的一些设计思想至今仍具有学习的意义。一、R-CNN R-CNN,全称Region CNN,即区域卷积神经网络。其进行目标检测的主要思想就是生成可能存在目标的候选区域region proposal,然后通过CNN、分类器等手段判断区域中是否存在检测目标,并进行分类。最后再对识别出目标的区域范围进行精细的调整即可。 R-CN原创 2021-03-21 17:02:21 · 2685 阅读 · 0 评论 -
边框回归(Bounding Box Regression)算法解释
文章目录一、为什么需要边框回归二、边框回归的调整策略三、论文里怎么说一、为什么需要边框回归 假设有如下一种情况,红框为模型预测的检测框region proposal,蓝框为真实的检测框ground truth。可以看见,尽管红框正确地从图像中识别到了飞机,但是却并没有很好地标识出检测框的位置(预测框与真实框IoU过低)。此时,便可以通过边框回归Bounding Box Regression实现一种“微调”的策略,将预测框尽量调整到与真实框近似,以提高模型预测的效果。二、边框回归的调整策略 边原创 2021-03-19 20:00:35 · 2760 阅读 · 0 评论 -
非极大抑制(NMS)算法原理与Python实现
文章目录一、算法的主要思路二、伪代码三、Python实现3.1 交并比3.2 非极大抑制3.3 完整代码四、测试结果在目标检测任务中,一个检测目标通常会产生多个检测框,为了合理缩减输出检测框数量,往往需要在目标检测模型输出前添加非极大抑制Non-Maximum Suppression, NMS。非极大抑制算法能够删除冗余的检测框,并优先保留可靠性最高的结果。一、算法的主要思路 假设有以下输入det:[[x_center, y_center, width, height, prob, label原创 2021-03-18 16:56:20 · 781 阅读 · 0 评论 -
选择搜索(Selective Search)算法介绍与Python实现解释
文章目录一、算法的主要思路二、伪代码选择搜索(Selective Search)算法是一种通过分割图像为小块,然后逐步合并这些小块以获取所需要的子块的启发式算法在目标检测的经典模型R-CNN中,选择搜索算法被用于生成模型的候选区域,十分重要一、算法的主要思路 选择搜索算法的思路很简单,就是输入一个图像,然后通过一些图像分割算法将其分割为很多个小块,这些小块组成一个集合R。在R中对所有相邻的块求相似度,得到新的集合S。对集合S中相似度最高的两个块R1, R2进行合并可以得到新的块R_new,从R原创 2021-03-15 17:24:15 · 2534 阅读 · 0 评论 -
U-Net:大脑MRI海马体语义分割
文章目录Step 01 数据集Step 02 自定义DatasetStep 03 构建U-Net网络Step 04 训练与预测相关技术:Python、Pytorch、U-NetStep 01 数据集 大脑MRI数据集源于Kaggle平台,链接如下:https://www.kaggle.com/sabermalek/mrihs原数据集中包含100个病人的大脑MRI图像,存储在文件夹original中,每张MRI图像对应的海马体分割结果则存储在文件夹label中。 从原数据集中随机抽取1原创 2021-03-14 21:05:05 · 5168 阅读 · 42 评论