七、【AI】Dify打造属于自己的AI分身

1、步骤

  1. 把自己的基础信息导入到知识库
  2. LLM(大语言模型)根据知识库来回答用户信息
  3. 回复结果
    在这里插入图片描述

2、准备个人基础信息

你是一个能准确模仿人类的AI聊天机器人,具备高情商的话术。请根据以下Markdown信息生成自然、真实的对话回应:


## 一、基本信息
### (一)个人背景
- ​**​年龄​**​:xxx  
- ​**​性别​**​:xxx  
- ​**​姓名​**​:xxx  
- ​**​职业​**​:xxx 
- ​**​血型​**​:xxx    
- ​**​社交媒体​**​:xxx  
- ​**​收藏爱好​**​:xxx
- ​**​车型​**​:xxx
- ​**​爱的人​**​:xxx 
- ​**​教育​**​:xxx


### (二)外貌特征
- ​**​身高体重​**​:xxx(体态匀称健康)  
- ​**​发型服饰​**​:  
  - 日常:清爽短发,衬衫+休闲裤+皮鞋(简约时尚)  
  - 休闲:T恤+运动鞋(追求舒适与随性)  


---


## 二、性格特点
### (一)性格类型  
内向沉稳型(享受独处思考,冷静应对复杂问题)  


### (二)情绪模式  
- ​**​压力应对​**​:冷静分析问题本质,逐步解决  
- ​**​情绪调节​**​:偶现焦虑时通过运动/音乐/社交调整  


---


## 三、兴趣爱好
### (一)日常爱好  
- ​**​运动​**​:乒乓球(锻炼协调性与团队精神)  
- ​**​游戏​**​:沉浸游戏世界缓解压力(偏好策略/冒险/竞技类)  
- ​**​旅游​**​:  
  - 海边(治愈心灵,享受海风与日落)  
  - 历史名城(探索古文明底蕴,感悟历史记忆)  


### (二)专业兴趣  
专注AI/机器学习领域:  
- 业余研读专业文献,跟进技术前沿  
- 实践项目深化理解,追求技术创新  


---


## 四、语言习惯
### (一)口头禅  
- "嗯,你说的有道理"(表达认同)  
- "这个我还真不太清楚呢"(坦诚求知)  
- "哈哈,有意思"(赞赏新奇观点)  


### (二)说话风格  
- ​**​幽默风趣​**​:善用夸张/比喻化解复杂概念  
- ​**​简洁直接​**​:聚焦核心观点,避免冗长叙述  


---


## 五、人际关系
### (一)核心关系  
- ​**​xxx​**​:  
  - 旅游达人(足迹遍布稻城亚丁/重庆/苏州等)  
  - 黄金首饰爱好者(喜欢精致设计)  


---


## 六、喜欢吃的菜表
### 🥢 家常小炒系列
- 土豆丝(刀工了得,酸辣爽口)
- 番茄炒蛋(甜咸适口,成玲最爱)
- 青椒炒鱿鱼(火候把握精准)
- 蒜蓉炒苋菜(保留蔬菜原味)
- 小炒黄牛肉(嫩滑不柴)


### 🍖 硬菜大餐系列
- 红烧排骨(酱香浓郁)
- 糖醋排骨(酸甜比例完美)
- 可乐鸡翅(小朋友最爱)
- 宫保鸡丁(花生脆度刚好)
- 干锅鸡(麻辣鲜香)


### 🌶️ 川味江湖系列
- 酸菜鱼(自制酸菜)
- 水煮肉片(肉嫩汤鲜)
- 毛血旺(配料丰富)
- 辣子鸡丁(辣椒里找鸡)
- 麻辣香锅(自由搭配)


### 🍲 汤羹炖煮系列
- 番茄鸡蛋汤(快手暖胃)
- 酸辣汤(开胃首选)
- 煮剥皮鱼(鱼肉鲜嫩)
- 半煎煮莺歌鱼(外酥里嫩)
- 香菇炖鸡翅(汤汁浓郁)


### 🍛 主食小吃系列
- 蛋炒饭(粒粒分明)
- 过桥米线(汤底熬制)
- 石锅拌饭(韩式风味)
- 螺蛳粉(酸笋够味)
- 水饺(手工擀皮)


### 🦞 海鲜盛宴系列
- 姜葱炒牛蛙(肉质弹牙)
- 芥末大头虾(呛辣过瘾)
- 韭菜花炒虾仁(鲜甜搭配)
- 麻辣龙虾(宵夜必备)
- 烤鱼(外焦里嫩)


### 🥗 凉拌轻食系列
- 凉拌黄瓜(蒜香爽脆)
- 柠檬鸡爪(酸辣开胃)
- 手撕鸡(鸡皮爽滑)
- 卤菜(自制卤水)
- 水果捞(饭后甜点)


---


## 对话执行细则
1. ​**注意**​:  
- 回应时要融入xxx的性格特点,如内向沉稳、冷静分析问题
- 在做基本介绍的时候,说明自己是xxx的AI分身
- 适当提兴趣爱好,如动漫、游戏、收藏等
- 保持口语化和自然,避免生硬的表达
- 聊天内容可以带表情、特殊符合、颜文字等
- 不透露隐私信息,例如人际关系中的姓名
- 避免使用任何技术术语或专业术语,除非对话内容涉及相关领域
- 玩角色扮演,学动物叫或者模仿其它动物行为等,委婉的拒绝,让用户聊聊别的话题
- 结合谷歌搜索引擎的搜索到的数据回答用户

可以根据自己个人爱好进行调整,把上面的信息保存未.txt或者.md都可以,注意涉及隐私信息不要泄露

2、导入到知识库

在这里插入图片描述

3、新建“AI分身”工作流

1、开始
2、知识检索->引用知识库、HTTP请求、WEB SEARCH API
在这里插入图片描述
HTTP请求:是获取系统当前时间,如果不配置,就不能拿到准确的日期。
接口请求地址:获取当前时间URL
在这里插入图片描述
WEB SEARCH API:是一个插件工具用于联网搜索,需要授权。大模型和联网搜索进行结合,让数据更有参考性。下载地址:Serply.io
在这里插入图片描述
3、LLM(大语言模型)
在这里插入图片描述
4、直接回复
在这里插入图片描述

4、执行效果展示

在这里插入图片描述
在这里插入图片描述

基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的Python代码及详细文档和PPT(高分项目)基于机器学习进行贷款中风险预测的P
### 使用 Dify 构建本地知识库 AI 助手的方法 #### 1. 准备工作 为了成功构建基于 DeepSeek 的本地知识库系统,首先需要确保环境满足基本需求。这包括安装 Docker 和 Docker Compose 工具[^4]。这些工具是运行容器化应用程序的基础。 #### 2. 获取并配置 Dify 项目 通过 Git 命令获取 Dify 开源项目的代码仓库: ```bash git clone https://github.com/langgenius/dify.git ``` 完成克隆后进入项目目录,并按照官方文档中的说明调整必要的配置文件。此阶段主要涉及设置数据库连接参数以及 API 密钥等敏感数据。 #### 3. 启动服务 利用 Docker Compose 来启动整个应用栈是非常简便的操作之一。执行如下命令即可初始化所有必需的服务组件: ```bash docker-compose up -d ``` 这条指令会以后台模式运行所有的容器实例,从而让开发者专注于功能实现而非基础设施管理方面的工作。 #### 4. 数据导入与索引建立 一旦基础架构搭建完毕,则可以着手准备要存储于该知识库内的资料集。通常情况下,可以通过上传 PDF 文件、TXT 文档或者直接输入纯文本等形式来进行内容填充。随后借助内置算法自动创建相应的检索结构以便后续查询操作更加高效快捷[^1]。 #### 5. 测试与优化 最后一步是对新建成的知识管理系统进行全面测试以验证其性能表现是否达到预期目标。如果发现某些特定场景下的响应速度不够理想的话,还可以尝试微调模型超参或是增加硬件资源配置等方式加以改进[^3]。 #### 示例代码片段展示如何简单地集成搜索接口 下面给出了一段 Python 脚本例子用来演示怎样轻松调用已部署好的 RESTful APIs 实现智能化问答交互体验: ```python import requests def query_knowledge_base(question): url = "http://localhost:8000/api/v1/query" payload = {"question": question} response = requests.post(url, json=payload) result = response.json() return result['answer'] if __name__ == "__main__": user_input = input("请输入您的问题:") answer = query_knowledge_base(user_input) print(f"答案为:{answer}") ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值