深度学习环境配置(二) Anaconda下配置tensorflow-gpu

为什么要用Anaconda:
Anaconda可以便捷获取包且对包能够进行管理,能同时鼓管理多个环境,此外,Anaconda还包含了numpy、scipy在内的超过180个科学包及其依赖项.

conda命令

管理Python包

  1. 安装一个包:

conda install package_name

  1. 移除一个包:

conda remove package_name

  1. 升级包版本:

conda update package_name

  1. 查看所有的包:

conda list

  1. 更新所有包

conda update --all

  1. 本地安装包

conda install --use-local D:\XXX.tar.bz2
#pip本地安装
pip install D:\XXX.whl

管理Python环境

  1. 创建一个新环境:

conda create -n env_name list of packages

  1. 删除名为env_name的环境:

conda env remove -n env_name

  1. 显示所有的环境:

conda env list

  1. 进入名为env_name的环境:

conda activate env_name

  1. 退出当前环境:

conda deactivate

  1. 环境改名(先clone再删除)

conda create -n TF2.3 --clone TF2.1
conda remove -n TF2.1 --all

Anaconda下安装TensorFlow

  1. 安装gpu版tensorflow前要先安装CUDA和cuDNN,详见:
    深度学习环境配置(一) 安装CUDA和cuDNN;
  2. 下载安装Anaconda: 略;
  3. 在开始菜单打开’Anaconda Prompt’,进行以下操作:
  4. 换源(中科大源)
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --set show_channel_urls yes

#切换回默认源:
conda config --remove-key channels
#或直接删除.condarc文件

  1. 创建新环境

conda create -n TensorFlow python=3.6

  1. 进入环境

conda activate TensorFlow

  1. 安装工具包(如果安装tensorflow2.0、2.1则会自动安装工具包,不必进行此步)

conda install cudatoolkit=9.0
conda install cudnn=7.1.4

如果conda install找不到包,可到https://repo.anaconda.com/pkgs/下载后本地安装.

  1. 安装 tensorflow-gpu

conda install tensorflow-gpu=1.12

  1. 验证:
import tensorflow as tf
print(tf.test.is_gpu_available())

结果为True则安装成功:
在这里插入图片描述

其他

  • 如果安装tensorflow-gpu后报错AttributeError: module 'tensorflow' has no attribute 'compat' when importing tensorflow
    则重新安装对应版本的 tensorflow-estimator 即可:

conda install tensorflow-estimator==2.0.0

  • 若只安装cpu版本:

conda install tensorflow=2.0

  • 如果pip安装(豆瓣源):
python -m pip install tensorflow-gpu==2.0 -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
  • 若要升级pip:

python -m pip install --upgrade pip

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

拟古的新打油诗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值