为什么要用Anaconda:
Anaconda可以便捷获取包且对包能够进行管理,能同时鼓管理多个环境,此外,Anaconda还包含了numpy、scipy在内的超过180个科学包及其依赖项.
conda命令
管理Python包
- 安装一个包:
conda install package_name
- 移除一个包:
conda remove package_name
- 升级包版本:
conda update package_name
- 查看所有的包:
conda list
- 更新所有包
conda update --all
- 本地安装包
conda install --use-local D:\XXX.tar.bz2
#pip本地安装
pip install D:\XXX.whl
管理Python环境
- 创建一个新环境:
conda create -n env_name list of packages
- 删除名为env_name的环境:
conda env remove -n env_name
- 显示所有的环境:
conda env list
- 进入名为env_name的环境:
conda activate env_name
- 退出当前环境:
conda deactivate
- 环境改名(先clone再删除)
conda create -n TF2.3 --clone TF2.1
conda remove -n TF2.1 --all
Anaconda下安装TensorFlow
- 安装gpu版tensorflow前要先安装CUDA和cuDNN,详见:
深度学习环境配置(一) 安装CUDA和cuDNN; - 下载安装Anaconda: 略;
- 在开始菜单打开’Anaconda Prompt’,进行以下操作:
- 换源(中科大源)
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --set show_channel_urls yes
#切换回默认源:
conda config --remove-key channels
#或直接删除.condarc文件
- 创建新环境
conda create -n TensorFlow python=3.6
- 进入环境
conda activate TensorFlow
安装工具包(如果安装tensorflow2.0、2.1则会自动安装工具包,不必进行此步)
conda install cudatoolkit=9.0
conda install cudnn=7.1.4
如果conda install找不到包,可到https://repo.anaconda.com/pkgs/下载后本地安装.
- 安装 tensorflow-gpu
conda install tensorflow-gpu=1.12
- 验证:
import tensorflow as tf
print(tf.test.is_gpu_available())
结果为True则安装成功:
其他
- 如果安装tensorflow-gpu后报错
AttributeError: module 'tensorflow' has no attribute 'compat' when importing tensorflow
则重新安装对应版本的 tensorflow-estimator 即可:
conda install tensorflow-estimator==2.0.0
- 若只安装cpu版本:
conda install tensorflow=2.0
- 如果pip安装(豆瓣源):
python -m pip install tensorflow-gpu==2.0 -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
- 若要升级pip:
python -m pip install --upgrade pip