验证二叉搜索树

问题描述

给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
        节点的左子树只包含 小于 当前节点的数。
        节点的右子树只包含 大于 当前节点的数。
        所有左子树和右子树自身必须也是二叉搜索树。

在这里插入图片描述

使用中序遍历解法

若某一棵树是二叉搜索树,则其中序遍历一定有序。所以利用这一个性质,再遍历左右子树的同时,直接查看该树是不是满足有序的条件。同时满足二叉树的条件需要满足左子树的最大值小于根节点的值,右子树的最小值大于根节点的值。


/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    long preValue = Long.MIN_VALUE;

    /**
     *  若二叉树是搜索二叉树,则中序遍历是有序的
     * @param root
     * @return
     */
    public boolean isValidBST(TreeNode root) {
        if (root == null) return true;
        boolean isLeftBST = checkBST(root.left);
        // 左子树是二叉搜索树时,需要判断左子树的最大值小于根节点的值,若大于时,返回false
        if (!isLeftBST) return false;
        if (root.val <= preValue) {
            return false;
        } else {
            preValue = root.val;
        }

        // 判断右子树是不是搜索二叉树,此时不需要判断右子树的最小值大于根节点的值,因为preValue保证了一定满足
        boolean isRightBST = checkBST(root.right);
        return isRightBST;
    }
    /**
     * 判断以root为根节点的树是不是二叉搜索树
     * @param root
     * @return
     */
    private boolean checkBST(TreeNode root) {
        if (root != null) {
            Stack<TreeNode> stack = new Stack<>();
            while (!stack.isEmpty() || root != null) {
                if (root != null) {
                    stack.push(root);
                    root = root.left;
                } else {
                    root = stack.pop();
                    // 处理弹出的节点
                    if (root.val <= preValue) {    // 题目要求是节点的 左子树只包含 小于 当前节点的数。
                        return false;
                    } else {
                        preValue = root.val;

                    }
                    root = root.right;
                }
            }
        }
        return true;
    }

}

递归套路解法(树形dp套路)

分析:
若以x为头节点的树是搜索二叉树,需要满足
         左子树是二叉搜索树,右子树是二叉搜索树
         左子树的最大值 < x.val, 右子树的最小值 > x.val
         左右子树需要返回的信息是(是不是搜索二叉树,最小值,最大值 )
该方法的主要思路时假设根节点可以向其左右子树要答案。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
	// 设计返回结构
    class ReturnType{
        boolean isBST;
        long min;
        long max;

        public ReturnType(boolean isBST,long min,long max) {
            this.isBST = isBST;
            this.min = min;
            this.max = max;
        }
    }

    public boolean isValidBST(TreeNode root) {
        return process(root).isBST;
    }

    private ReturnType process(TreeNode root) {
        if (root == null) {
            return null;       
        }

        ReturnType leftReturn = process(root.left);
        ReturnType rightReturn = process(root.right);

       
        long min = root.val;
        long max = root.val;

        if (leftReturn != null) {
            min = Math.min(min,leftReturn.min);
            max = Math.max(max,leftReturn.max);
        }
        if (rightReturn != null) {
            min = Math.min(min,rightReturn.min);
            max = Math.max(max,rightReturn.max);
        }

        boolean isBST = true;
        if (leftReturn != null && (leftReturn.isBST == false || leftReturn.max >= root.val)) {
            isBST = false;
        }

        if (rightReturn != null && (rightReturn.isBST == false || rightReturn.min <= root.val)) {
            isBST = false;
        }

        return new ReturnType(isBST,min,max);
    }

}

结果:

递归套路:
在这里插入图片描述
中序遍历解法
在这里插入图片描述
总结: 测试用例好狗哦。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值