题目描述
小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100。
但是他并不满足于此,他在想究竟有多少种连续的正数序列的和为100(至少包括两个数)。
没多久,他就得到另一组连续正数和为100的序列:18,19,20,21,22。
现在把问题交给你,你能不能也很快的找出所有和为S的连续正数序列?
输出描述:
输出所有和为S的连续正数序列。序列内按照从小至大的顺序,序列间按照开始数字从小到大的顺序
使用窗口结构
使用窗口结构,如果窗口内的和大于S,则L++,如果窗口内的和小于S,则R++:
public class Solution {
public ArrayList<ArrayList<Integer> > FindContinuousSequence(int sum) {
ArrayList<ArrayList<Integer>> list = new ArrayList<ArrayList<Integer>>();
int L = 1;
int R = 2;
while(R>L){
int res = (L+R)*(R-L+1) / 2;
if(res==sum){
ArrayList<Integer> in = new ArrayList<Integer>();
for(int i =L;i<=R;i++){
in.add(i);
}
list.add(in);
L++;
}else if(res>sum){
L++;
}else{
R++;
}
}
return list;
}
}
利用S/n得到平均值
利用S/n得到平均值(n为连续数字的个数)。
如果n为奇数个,那么S/n得到的正好是中间的那个数,往前推(n-1)/2个就是这个序列的开头;
(n&1)1) && sum%n0 表示n为奇数时,sum可以被n个数得到
如果n为偶数个,那么S/n得到的是中间2个数的平均值,往前推(n-1)/2个就是这个序列的开头。
sum%n*2 ==n 表示n为偶数时,中间2个数的平均值一定带小数0.5,也就是说sum%n得到的结果一定是0.5n
由题可知n>= 2,我们完全可以将n从2到S全部遍历一次,但是大部分遍历是不必要的。
根据等差数列的求和公式:S = (1 + n) * n / 2,得到n^2<2S
public class Solution {
public ArrayList<ArrayList<Integer> > FindContinuousSequence(int sum) {
ArrayList<ArrayList<Integer>> list = new ArrayList<ArrayList<Integer>>();
for(int n=(int)Math.sqrt(2*sum);n>=2;n--){
if(((n&1)==1) && sum%n==0 || sum%n*2 ==n){
ArrayList<Integer> in = new ArrayList<Integer>();
for(int j = 0, k = (sum/n) - (n-1)/2;j<n;j++,k++){
in.add(k);
}
list.add(in);
}
}
return list;
}
}