问题描述
给定一个信封,有N(1≤N≤100)个位置可以贴邮票,每个位置只能贴一张邮票。我们现在有M(M<=100)种不同邮资的邮票,面值为X1,X2….Xm分(Xi是整数,1≤Xi≤255),每种都有N张。
显然,信封上能贴的邮资最小值是min(X1, X2, …, Xm),最大值是 N*max(X1, X2, …, Xm)。由所有贴法得到的邮资值可形成一个集合(集合中没有重复数值),要求求出这个集合中是否存在从1到某个值的连续邮资序列,输出这个序列的最大值。
例如,N=4,M=2,面值分别为4分,1分,于是形成1,2,3,4,5,6,7,8,9,10,12,13,16的序列,而从1开始的连续邮资序列为1,2,3,4,5,6,7,8,9,10,所以连续邮资序列的最大值为10分。
输入格式
第一行:最多允许粘贴的邮票张数N;第二行:邮票种数M;第三行:空格隔开的M个数字,表示邮票的面值Xi。注意:Xi序列不一定是大小有序的!
输出格式
从1开始的连续邮资序列的最大值MAX。若不存在从1分开始的序列(即输入的邮票中没有1分面额的邮票),则输出0.
样例输入
样例一:
4
2
4 1
样例二:
10
5
2 4 6 8 10
样例输出
样例一:
10
样例二:
0
思路
- 本题采用动态规划解决
- 解题过程:
-
对于N=4,M=2,面值分别为4分,1分:
-
可得最大邮资值为4 * 4 = 16
-
创建数组dp,dp[i] = j表示构成邮资值i最少需要的邮票数 初始dp[0] = 0
-
对于1--3,只能由1分的邮票构成, 即dp[1] = 1,dp[2] = 2,dp[3] = 3
-
对于4,可选面值1和4: 使用面值1: 在邮资为3的基础上选一张1,即dp[4] = dp[4 - 1] + 1 = dp[3] + 1 = 4 使用面值4:在邮资为0的基础上选一张4,即dp[4] = dp[4 - 4] + 1 = dp[0] + 1 = 1 取之间的最小值即dp[4] = 1
-
对于5,可选面值1和4: 选面值1: 在邮资为4的基础上选一张1,即dp[5] = dp[5 - 1] + 1 = dp[4] + 1 = 2 选面值4: 在邮资为1的基础上选一张4,即dp[5] = dp[5 - 4] + 1 = dp[1] + 1 = 2
-
以此类推,直到dp[i]的值大于给定的贴邮票的最大值, 说明无法用这些邮票构成此邮资值 例子中当i = 11时,dp[11] = min(dp[10] + 1, dp[7] + 1) = 5 超过4,则返回上一个符合要求的数10 即连续邮资序列最大到10
-
- 通过对例题的解释,可得动态规划的状态转移方程为:
dp[i] = min(dp[i - j] ) + 1
j为小于等于i的邮票面值
代码
import java.util