算法训练 邮票 Java

给定一定数量和面值的邮票,求是否存在从1开始的连续邮资序列并输出其最大值。使用动态规划求解,通过状态转移方程dp[i] = min(dp[i - j]) + 1,其中j为小于等于i的邮票面值。
摘要由CSDN通过智能技术生成

问题描述

给定一个信封,有N(1≤N≤100)个位置可以贴邮票,每个位置只能贴一张邮票。我们现在有M(M<=100)种不同邮资的邮票,面值为X1,X2….Xm分(Xi是整数,1≤Xi≤255),每种都有N张。

显然,信封上能贴的邮资最小值是min(X1, X2, …, Xm),最大值是 N*max(X1, X2, …,  Xm)。由所有贴法得到的邮资值可形成一个集合(集合中没有重复数值),要求求出这个集合中是否存在从1到某个值的连续邮资序列,输出这个序列的最大值。

例如,N=4,M=2,面值分别为4分,1分,于是形成1,2,3,4,5,6,7,8,9,10,12,13,16的序列,而从1开始的连续邮资序列为1,2,3,4,5,6,7,8,9,10,所以连续邮资序列的最大值为10分。

输入格式

第一行:最多允许粘贴的邮票张数N;第二行:邮票种数M;第三行:空格隔开的M个数字,表示邮票的面值Xi。注意:Xi序列不一定是大小有序的!

输出格式

从1开始的连续邮资序列的最大值MAX。若不存在从1分开始的序列(即输入的邮票中没有1分面额的邮票),则输出0.

样例输入

样例一:
4
2
4 1
样例二:
10
5
2 4 6 8 10

样例输出

样例一:
10
样例二:
0

思路

  • 本题采用动态规划解决
  • 解题过程:
    • 对于N=4,M=2,面值分别为4分,1分:
      
    •  可得最大邮资值为4 * 4 = 16
      
    • 创建数组dp,dp[i] = j表示构成邮资值i最少需要的邮票数
      初始dp[0] = 0
      
    •  对于1--3,只能由1分的邮票构成,
       即dp[1] = 1,dp[2] = 2,dp[3] = 3
      
    • 对于4,可选面值1和4:
      使用面值1:
      在邮资为3的基础上选一张1,即dp[4] = dp[4 -  1] + 1 = dp[3] + 1 = 4
      使用面值4:在邮资为0的基础上选一张4,即dp[4] = dp[4 -  4] + 1 = dp[0] + 1 = 1  
      取之间的最小值即dp[4] = 1
      
    • 对于5,可选面值1和4:
      选面值1:
      在邮资为4的基础上选一张1,即dp[5] = dp[5 -  1] + 1 = dp[4] + 1 = 2
      选面值4:
      在邮资为1的基础上选一张4,即dp[5] = dp[5 -  4] + 1 = dp[1] + 1 = 2  
      
    • 以此类推,直到dp[i]的值大于给定的贴邮票的最大值,
      说明无法用这些邮票构成此邮资值
      例子中当i = 11时,dp[11] = min(dp[10] + 1, dp[7] + 1) = 5
      超过4,则返回上一个符合要求的数10
      即连续邮资序列最大到10
      
  • 通过对例题的解释,可得动态规划的状态转移方程为:
    dp[i] = min(dp[i - j] ) + 1
    j为小于等于i的邮票面值

代码

import java.util
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值