前言
栈(Stack)是一种只允许在一端进行插入或删除操作的线性表。
栈顶(Top)是允许进行插入删除的一端。
栈底(Bottom)是固定不允许插入删除的一端。
栈的操作特性概括为后进先出(Last In First Out,LIFO)。
相关知识:
C++结构体
C++指针
C++引用
线性表之顺序表
类型描述
假定线性表的元素类型为ElemType。
栈的顺序存储类型可描述为:
#define MaxSize 50
typedef struct {
ElemType data[MaxSize];
int top; //栈顶指针
}SqStack;
也可采用动态分配:
#define InitSize 100
typedef struct {
ElemType *data;
int top;
} SqStack;
C的初始动态分配语句:
S.data = (ElemType*)malloc(sizeof(ElemType)*InitSize);
C++的初始动态分配语句:
S.data = new ElemType[InitSize];
基本操作的实现
1.基本操作的实现取决于采用哪种存储结构,存储结构不同,算法的实现也不同;
2.此处将栈顶指针top初始化为-1,相当于规定top指向当前的栈顶元素;
若初始化top为0,则规定top指向栈顶元素的下一位;
3.进栈操作:栈不满时,栈顶指针先加1,再送值到栈顶元素;
4.出栈操作:栈非空时,先取出栈顶元素值,再将栈顶指针减1;
5.栈空条件:S.top == -1;栈满条件:S.top == MaxSize - 1。
//
// Created by Evian on 2020/3/8.
// 顺序栈
#include <iostream>
using namespace std;
#define MaxSize 50
typedef int ElemType;
typedef struct {
ElemType data[MaxSize];
int top; //栈顶指针
}SqStack;
void InitStack(SqStack &S);
bool isEmpty(SqStack S);
bool push(SqStack &S, ElemType e);
bool pop(SqStack &S, ElemType &x);
ElemType GetTop(SqStack S);
void Display(SqStack S);
int main(){
SqStack stack;
ElemType x,e;
InitStack(stack);
push(stack, 8);
push(stack, 4);
Display(stack);
pop(stack, x);
push(stack,10);
Display(stack);
e = GetTop(stack);
cout<<"Top:"<<e<<endl;
return 0;
}
//初始化
void InitStack(SqStack &S){
S.top = -1;
}
//判栈空
bool isEmpty(SqStack S){
if (S.top == -1){
return true;
}
return false;
}
//进栈
bool push(SqStack &S, ElemType e){
if (S.top == MaxSize-1){
cout<<"栈为满"<<endl;
return false;
} else{
S.data[++S.top] = e;
return true;
}
}
//出栈
bool pop(SqStack &S, ElemType &x){
if (isEmpty(S)){
cout<<"栈为空"<<endl;
return false;
} else{
x = S.data[S.top--];
cout<<"Pop:"<<x<<endl;
return true;
}
}
//读栈顶元素
ElemType GetTop(SqStack S){
if (isEmpty(S)){
cout<<"栈为空"<<endl;
return -1;
} else{
return S.data[S.top];
}
}
//打印栈中元素,栈底在前,栈顶在后
void Display(SqStack S){
if (isEmpty(S)){
cout<<"栈为空"<<endl;
} else{
for (int i = 0; i != S.top ; i++) {
cout<<S.data[i]<<"--->";
}
cout<<S.data[S.top]<<endl;
}
}
以下为打印结果:
8--->4
Pop:4
8--->10
Top:10
如有错误,还请指正!TkY 0.0