子集生成


一:增量构造法

int arr[1<<10];

void print_subset1(int n, int cur) { 
	for(int i = 0; i < cur; i++)
		cout << arr[i] << " ";
	cout << endl;
	int s;
	if(cur) s = arr[cur-1]+1;//确定当前元素的最小可能值
	else s = 0;
	for(int i = s; i < n; i++) {
		arr[cur] = i;
		print_subset1(n, cur+1);//递归构造子集
	}
}

二:位向量法

bool arr2[1<<10];

void print_subset2(int n, int cur) {
	if(cur == n) {
		for(int i = 0; i < cur; i++) 
			if(arr2[i]) cout << i << " ";//打印当前集合
		cout << '\n';
		return;
	}
	arr2[cur] = true;//选第cur个元素
	print_subset2(n, cur+1);
	arr2[cur] = false;//不选第cur个元素
	print_subset2(n, cur+1);
}

三:二进制法

可以用二进制来表示序列的子集:从右忘左第i为(从0开始编号)表示元素i是否在集合S中。看表:

对应序列为:9,5,4,2,1,0

1000110111
9876543210
YNNNYYNYYY

下面我们来看位运算与集合运算:

位运算与集合运算
 ABA&B(集合交集)A|B(集合并集)A^B(对称差)
二进制1011001100001001111011010
集合{1,2,4}{2,3}{2}

{1,2,3,4}

{1,3,4}

这里有几个规律:

只有单个元素的集合:{n} 二进制为第n项为1,其余为0,转换为十进制表示为1<<n

空集:s=0

含有全部n个元素:(1<<n)-1

判断第i个元素是否属于集合S: S>>i &1

向集合中加入第i个元素:S|=1<<i

从集合中去除元素i:S&~(1<<i)

这样我们便好理解代码了:

int arr[1<<10];

void print_subset3(int n, int s) {
	for(int i = 0; i < n; i++)	
		if(s&(1<<i)) cout << i << " "; //两列表的交集不为空集
	cout << endl;
}

int n;
void print() {
	for(int i = 0; i < (1<<n); i++) //枚举各子集所对应的编码0,1,2,...,2^n-1
		print_subset3(n,i);
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值