p-7-4礼尚往来

1. 题目描述

吉哥还是那个吉哥,那个江湖人称“叽叽哥”的基哥。每当节日来临,女友众多的叽叽哥总是能从全国各地的女友那里收到各种礼物。有礼物收到当然值得高兴,但回礼确是件麻烦的事!无论多麻烦,总不好意思收礼而不回礼,那也不是叽叽哥的风格。现在,即爱面子又抠门的叽叽哥想出了一个绝妙的好办法:他准备将各个女友送来的礼物合理分配,再回送不同女友,这样就不用再花钱买礼物了!假设叽叽哥的n个女友每人送他一个礼物(每个人送的礼物都不相同),现在他需要合理安排,再回送每个女友一份礼物,重点是,回送的礼物不能是这个女友之前送他的那个礼物,不然,叽叽哥可就摊上事了,摊上大事了…现在,叽叽哥想知道总共有多少种满足条件的回送礼物方案呢?

2. 输入格式:

输入数据第一行是个正整数T,表示总共有T组测试数据(T <= 100); 每组数据包含一个正整数n,表示叽叽哥的女友个数为n( 1 <= n <= 100 )。

3.输出格式:

请输出可能的方案数,因为方案数可能比较大,请将结果对1000000007 取模后再输出。(提示:在递推过程中,不断求余防止数据太大导致数据溢出。) 每组输出占一行。

4. 输入样例:

3
1
2
4

5. 输出样例:

0
1
9

6. 解题思路

典型的错排,错排方法如下:当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用D(n)表示,那么D(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推.
第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法;
第二步,放编号为k的元素,这时有两种情况:⑴把它放到位置n,那么,对于剩下的n-1个元素,由于第k个元素放到了位置n,剩下n-2个元素就有D(n-2)种方法;⑵第k个元素不把它放到位置n,这时,对于这n-1个元素,有D(n-1)种方法;
综上得到
D(n) = (n-1) [D(n-2) + D(n-1)]
特殊地,D(1) = 0, D(2) = 1.

// 吉吉哥送礼物 
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
LL dp[110];

const int MOD=1e9+7;
int main(){
    int T,N;
    scanf("%d",&T);
    while(T--){
        scanf("%d",&N);
        dp[1]=0;dp[2]=1;
        for(int i=3;i<=100;i++){
            dp[i]=(i-1)*(dp[i-1]+dp[i-2])%MOD;
        }
        printf("%lld\n",dp[N]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值