算法题(1):如果a+b+c=1000,且a^2+b^2=c^2(a,b,c为自然数), 求出a,b,c可能的组合。

题目:如果a+b+c=1000,且a^2+b^2=c^2(a,b,c为自然数), 求出a,b,c可能的组合。

解决思路:穷举法,首先让a=0,b=0,c=1~1000,求其中的组合,以此类推:

"""
    如果a+b+c=1000,且a^2+b^2=c^2(a,b,c为自然数), 求出a,b,c可能的组合
"""
# 算法1
import time

start_time = time.time()
result_list = []
for a in range(1001):
    for b in range(1001):
        for c in range(1001):
            if a + b + c == 1000 and a ** 2 + b ** 2 == c ** 2:
                result_list.append((a, b, c))
end_time = time.time()
computing_time = end_time - start_time
print(result_list)
print(computing_time)

运算结果:

[(0, 500, 500), (200, 375, 425), (375, 200, 425), (500, 0, 500)]
137.0877537727356

优化:

c完全可以用c=1000-a-b来表示,这样可以减少1000次的循环

"""
    如果a+b+c=1000,且a^2+b^2=c^2(a,b,c为自然数), 求出a,b,c可能的组合
"""
import time

# 优化算法1
start_time = time.time()
result_list = []
for a in range(1001):
    for b in range(1001):
        c = 1000 - a - b
        if a ** 2 + b ** 2 == c ** 2:
            result_list.append((a, b, c))
end_time = time.time()
computing_time = end_time - start_time
print(result_list)
print(computing_time)

运算结果:

[(0, 500, 500), (200, 375, 425), (375, 200, 425), (500, 0, 500)]
1.103081464767456
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GC-757

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值