深度学习相关书籍
对读过的一些书做一些记录
小园秋子
脚踏实地,心中虔实,神明环绕,默默向前
展开
-
记-看完图灵鱼书《深度学习入门:基于Python的理论与实现》和《深度学习进阶:自然语言处理》
总结 历时差不多3个星期看完第一遍了,总的来说,收货很大,这两本书完全就是配套的,反正对我来说就是没看懂第一本就不可能看懂第二本,然后虽然看的时候告诉自己每个地方都要看懂,但是代码还是很多都没有看懂,害。等有时间一定要二刷,争取把全部代码都搞懂,后面代码部分,其实只有第一本梯度下降是真的都搞懂了,后面的部分感觉都是水过去的,就是那种一个上午就能看完一章的这种,,,害 二刷的时候,希望自己把代码尽可能多的搞懂,毕竟,nlp的话工程能力是很重要的 ...原创 2021-12-10 17:13:18 · 1291 阅读 · 0 评论 -
正向传播,使用梯度(偏导数)进行权重更新的过程
目录整个过程梳理1 只有两个数据2 踩用多批次 整个过程梳理 假设只有两层神经网络如下图: 1 只有两个数据 若只有2个数据,则 1 数据先输入神经网络,然后在第一层进行计算,计算之后采用sigmoid函数进行变换。这里将有一批权重W1和偏置b1这里注意,并不是说只有W1和b1两个数,而是说有一批W1和b1,它们对于不同的神经元节点是不同的值,初始化的时候采用符合高斯分布的随机数进行初始化 2 然后传入第二层进行计算,使用softMax进行变换,然后输出。这里和上面一样有W2和b2 3 输出之后若使用交叉原创 2021-11-28 09:07:26 · 3479 阅读 · 0 评论 -
深度学习入门:基于python的理论与实现---书中108页或111页代码疑惑
目录问题问题解答1 numerical_gradient函数2 loss函数问题解答 问题 书上对应的位置是108页的这一块,具体疑惑已经写在下面了。 或者也可以说111页,如下。 问题解答 1 numerical_gradient函数 一步一步看问题,首先贴出numerical_gradient的代码实现如下: def numerical_gradient(f, x): h = 1e-4 # 0.0001 grad = np.zeros_like(x) it = np原创 2021-11-27 18:04:57 · 1223 阅读 · 2 评论