线性回归和基础优化算法(李沐深度学习课程,自用)

线性回归

        平方损失定义:

\zeta (y,\widehat{y})=\frac{1}{2}(y-\widehat{y})^{\2}

        前有一个1/2是因为在求导时可以消去。

        线性回归可以看作是单层的神经网络模型。

基础优化算法

梯度下降

W_{t}=W_{t-1}-\eta \frac{\partial \iota }{\partial W_{t-1}}

(1)学习率

        \eta是学习率,属于超参数,需要人为指定

        太小会导致算法计算量过大且易陷入局部最优(个人理解)

        太大会导致很难收敛(个人理解)

(2)小批量梯度下降

        一般使用的方法为小批量梯度下降,即选取原始数据中的一小部分计算损失函数。小批量的大小b也是一个超参数。(计算所有原始数据梯度的计算量过大)

        小批量梯度下降一般是深度学习默认算法,优点:稳定简便

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值