Tensorflow2.0教程(1)

这篇博客介绍了如何使用TensorFlow 2.0的tf.keras构建模型,包括模型搭建、数据归一化、批归一化、回调函数和Dropout的使用。内容涵盖mnist手写体识别网络示例、归一化方法(Z-Score、最大最小值归一化)、模型训练与评估、以及模型优化技巧。
摘要由CSDN通过智能技术生成

TensorFlow 2.0学习日志

Day 1 熟悉使用tf.keras来搭建模型

1. 模型搭建

模型的搭建主要使用 keras.models.Sequential() 包来完成

from tensorflow import keras
model = keras.models.Sequential()

keras.layers中集成了大部分我们日常需要的神经网络层,因此利用keras.layers库我们可以非常方便地搭建神经网络模型,下面是一个简单的mnist手写体识别网络示例,输入是[28,28]的灰度图片。

model.add(keras.layers.Flatten(input_shape=[28,28]))
model.add(keras.layers.Dense(300, activation = "relu"))
model.add(keras.layers.Dense(100, activation = "relu"))
model.add(keras.layers.Dense(10, activation = "softmax"))

上面的代码段中,因为使用到的层都是全连接层,所以在输入的时候我们需要利用keras.layers.Flatten层把28*28的灰度图片展平成一维的向量,再输入到全连接层当中。keras.layers.Dense层中第一个输入代表的是隐层个数,也是输出的channel数,第二个输入是激活函数的名称。

  • Tips1:relu的作用是 y = m a x ( 0 , x ) y= max(0,x) y=max(0,x),即当 x x x小于 0 0 0时,神经元的激活作用被截断,但当 x x x大于0时,神经元的作用能够被激活
  • Tips2: softmax的作用是把向量转化为概率分布

下面展示利用keras搭建模型的第二种写法

model = keras.models.Sequential([
        keras.layers.Flatten(input_shape=[28
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值