自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 静息态功能磁共振成像(rs-fMRI)原理与数据分析——2

精神疾病的主要诱因被认为是Default,Salience,Executive网络连接出现问题。Autism Spectrum Disorder(ASD) 自闭症。Alzheimer’s Dementia(AD) 阿尔兹海默症。(1)学习组:额顶控制网络功能组强度在记忆时显著升高。视觉区的动态性直线下降,对于视觉的灵活性下降。Salience 外在和内在东西进行检测。发现在外侧额叶动态性直线上升,表明不稳定。Default 主管自身的有关的有关的。(2)控制组:大脑静息态显著不变化。

2024-03-26 17:32:48 423 1

原创 静息态功能磁共振成像(rs-fMRI)原理与数据分析——1

如果在扫描仪中,头动,无论是结构链接还是功能连接,都会造成图像的模糊运用Friston-24model来解决。

2024-03-21 15:30:59 968 1

原创 小白学习深度学习之(六)——序列模型

时序模型中,当前数据跟之前观察到的数据相关自回归模型使用自身过去数据来预测未来马尔科夫模型假设当前只跟最近少数数据相关,从而简化模型潜变量模型使用潜变量来概括历史信息。

2024-03-04 11:31:40 607 1

原创 小白学习深度学习之——计算机硬件

不要频繁在CPU和GPU 之间传输数据:带宽限制,同步开销。·主内存->L3->L2->L1->寄存器。··时间:重用数据使得保持它们再缓存里。··空间:按序读写数据使得可以预读取。·CPU:C++或者任何高性能语言。在计算a+b之前,需要准备数据。··主内存访问延时:100ns。··L1访问延时:0.5ns。·提升空间和时间的内存本地性。··Nvidia上用CUDA。··缓存更小,架构更加简单。··L2访问延时:7ns。··质量取决于硬件厂商。··编译器和驱动成熟。·其他用OpenCL。

2024-02-24 09:37:02 241

原创 经典论文之(四)——GNN

A Gentle Introduction to Graph Neural Networks》——图神经网络简介。神经网络已经适应了利用图的结构和属性。图神经网络探索了构建图神经网络所需的组件,并激发了它们背后的设计选择。图无处不在;现实世界的对象通常根据它们与其他事物的联系来定义。一组对象以及它们之间的联系自然地表示为图形。十多年来,研究人员已经开发了对图数据进行操作的神经网络(称为图神经网络或GNN)。最近的发展提高了它们的能力和表现力。

2024-01-23 14:04:07 1065

原创 小白学习深度学习之(五)——经典的卷积神经网络

回想一下,卷积层的输入和输出由四维张量组成,张量的每个轴分别对应样本、通道、高度和宽度。如果我们将权重连接到每个空间位置,我们可以将其视为 1×1 卷积层(如 :numref:sec_channels中所述),或作为在每个像素位置上独立作用的全连接层。这是因为虽然LeNet在小数据集上取得了很好的效果,但是在更大、更真实的数据集上训练卷积神经网络的性能和可行性还有待研究。注意,本书在这里提供的是一个稍微精简版本的AlexNet,去除了当年需要两个小型GPU同时运算的设计特点。3、汇聚层,如最大汇聚层。

2024-01-22 15:25:29 795

原创 小白学习深度学习之(四)——卷积神经网络

本章介绍的卷积神经网络(convolutional neural network,CNN)是一类强大的、为处理图像数据而设计的神经网络。基于卷积神经网络架构的模型在计算机视觉领域中已经占主导地位,当今几乎所有的图像识别、目标检测或语义分割相关的学术竞赛和商业应用都以这种方法为基础。

2024-01-19 20:06:42 996 1

原创 经典论文之(三)——Transformer

小白读论文

2024-01-07 13:14:34 1125 1

原创 经典论文之(二)——Resnet

Deep Residual Learning for Image Recognition》——用于图像识别的深度残差学习是由何凯明团队提出的,在当时获得分类任务,目标检测,图像分割第一名。该论文的四位作者何恺明、张祥雨、任少卿和孙剑如今在人工智能领域里都是响当当的名字。在本文中,提出的残差网络框架对后世影响深远。在本文做出的实验中,结果表明残差网络更容易优化,并且加深网络层数有助于提高正确率。在ImageNet数据集上,评估了深度高达152层的残差网——比VGG网深8倍[40],但仍然具有较低的复杂性。

2024-01-06 21:38:43 1415

原创 经典论文之(一)——Alexnet

ImageNet Classification with Deep Convolutional Neural Networks》(基于深度卷积神经网络的图像网络分类),是我今天想要学习的文章,也是非常厉害的一篇文章,是第一个引起大家注意的CNN网络。这篇文章的网络是在2012年的ImageNet竞赛中取得冠军的一个模型整理后发表的文章。文章训练了一个大型深度卷积神经网路,将ImageNet LSVRC-2010比赛中的120万幅高分辨率图像分为1000个不同的类别。

2024-01-04 12:06:22 987 2

原创 小白学习深度学习之(三)——多层感知机

在学习完线性回归和softmax回归后,我们开始对深度神经网络的的探索,这次我们将要介绍的是多层感知机。

2024-01-03 13:59:42 949

原创 小白学习深度学习之(A)——常见的激活函数

激活函数是通过计算加权和并加上偏置来确定神经元是否应该被激活,它们将输入信号并转化为输出的可微运算。大多数激活函数都是非线性的。由于激活函数的深度学习的基础,下面。

2024-01-03 13:14:25 912

原创 小白学习深度学习之(二)——softmax回归

在我们的例子中,由于我们有4个特征和3个可能的输出类别, 我们将需要12个标量来表示权重(带下标的 𝑤 ), 3个标量来表示偏置(带下标的 𝑏 )。如果类别间有一些自然顺序, 比如说我们试图预测 {婴儿,儿童,青少年,青年人,中年人,老年人} , 那么将这个问题转变为回归问题,并且保留这种格式是有意义的。因此,为了实现我们的模型, 我们只需在Sequential中添加一个带有10个输出的全连接层。回归可以用于预测多少的问题,比如预测房屋被出售的价格,或者棒球队可能获胜的胜场数,又或者患者住院的天数。

2024-01-03 12:24:50 949

原创 小白学习深度学习之(一)——线性回归

回归问题是能为一个或多个自变量与因变量之间关系建模的一类方法。在自然科学与社会科学领域,回归经常用来表示输入和输出之间的关系在计算机视觉领域,大多数任务都和预测有关。当我们需要与预测一个数值时,就会涉及到回归问题。

2024-01-02 21:30:22 829

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除