深度学习之卷积神经网络中常用模型评估指标(混淆矩阵,精确率,召回率,特异度计算方法)——python代码

本文介绍了深度学习中卷积神经网络模型的评估指标,包括混淆矩阵、精确率、召回率和特异度,并提供了Python代码示例。通过这些指标,可以量化模型的性能,尤其是在论文中展示模型优势。文中还分享了一个使用玉米病害数据集的例子,指导如何调整代码以适应不同数据集和模型,最终输出相关指标并绘制混淆矩阵图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习之卷积神经网络中常用模型评估指标(混淆矩阵,精确率,召回率,特异度计算方法):

混淆矩阵,精确率,召回率,特异度作为卷积神经网络的模型性能评价指标,它们的计算和绘制具有非常重要的意义,特别是在写论文的时候,我们往往需要这些指标来证明我们模型的优异性,这里给出相应的代码方便大家计算和绘制自己的混淆矩阵和计算各种指标。我这里是使用的网上开源的玉米病害数据集。下面给我的整个项目工程的数据集代码链接,你替换成你的数据集,模型结构代码即可。

首先是文件夹摆放方式:

num_classes.json为写自己数据种类的文件:

按照这样写入自己的数据种类名称即可,如果种类比这多或者少,相应删减即可

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小馨馨的小翟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值