1.螺旋数组(方阵)
给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。
示例:
输入: 3 输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ]
5. 螺旋矩阵
模拟法,关键是循环不变量
题解
本题使用模拟法,只要把每圈(基本单位)的代码写好,整体就好写了
代码
// 5. 螺旋数组
public int[][] generateMatrix(int n) {
int[][] res = new int[n][n];
int rount=n/2; //循环圈数
int offset=1;//初始结尾偏移
int num=1;
while (rount>0){
int startx=offset-1;
int starty=startx;
int i=startx,j = starty;
// 最上面水平
for (; j<n-offset ; j++) {
res[i][j]=num++;
}
//右 竖
for (; i <n-offset ; i++) {
res[i][j]=num++;
}
// 下横
for (;j>starty; j--) {
res[i][j]=num++;
}
for (; i>startx ; i--) {
res[i][j]=num++;
}
offset++;
rount--;
}
if (n%2!=0){
res[n/2][n/2]=num;
}
for (int[] re : res) {
System.out.println(Arrays.toString(re));
}
return res;
}
2. 顺时针打印数组
输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
示例 1:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,3,6,9,8,7,4,5]
示例 2:
输入:matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
输出:[1,2,3,4,8,12,11,10,9,5,6,7]
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/shun-shi-zhen-da-yin-ju-zhen-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
1. 题解
本题的关键是打印每个圈的每个部分时,判断是否能够打印
从左到右: 不需要判断
从上到下: 至少两行
从右向左:至少两行两列
从下到上: 至少三行两列
圈数: start*2<行和列
2. 代码
//197 顺时针打印矩阵
/**
* 一般解法
* @param matrix
* @return
*/
public int[] spiralOrder(int[][] matrix) {
if(matrix==null){
return null;
}
if(matrix.length==0){
return new int[0];
}
int start=0; // 开始坐标 x=y
int offset=0; //[start,n-offset]
int row=matrix.length;
int col=matrix[0].length;
int[] res=new int[row*col];
int count=0;
// 圈数
while(col>start*2&&row>start*2){
int endX=col-offset-1;
int endY=row-offset-1;
// 横
for (int i = start; i <=endX ; i++) {
res[count++]=matrix[start][i];
System.out.println(matrix[start][i]);
}
//右竖 需要判断有没有两行 此时start是y开始
if (endY>start){
for (int i = start+1; i <=endY ; i++) {
res[count++]=matrix[i][endX];
System.out.println(matrix[i][endX]);
}
}
//从右向左 判断至少 两行 两列 反例 一行时
if (start<endY&&start<endX){
for (int i = endX-1; i >=start ; i--) {
res[count++]=matrix[endY][i];
System.out.println(matrix[endY][i]);
}
}
//从下向上 至少 三行两列
if (start+1<endY&&start<endX){
for (int i = endY-1; i >start ; i--) {
res[count++]=matrix[i][start];
System.out.println(matrix[i][start]);
}
}
offset++;
start++;
}
return res;
}
}