机器学习
无涯阁主
https://github.com/D-Keqi
展开
-
Pytorch多GPU训练踩坑记录2
问题介绍使用nn.DataParallel进行多GPU训练时,对模型进行传参,有时会出现报错“RuntimeError: chunk expects at least a 1-dimensional tensor”。问题分析nn.DataParallel的作用是将模型和数据分配到各个GPU上,让其在各自的GPU上训练,首先检查batchsize是否是GPU数量的整数倍,以及dataloader是否设置了drop_last是否是true,如果没有drop_last,那么最后一个batchsize剩下的数原创 2020-07-13 17:56:52 · 3461 阅读 · 0 评论 -
使用Pytorch多GPU训练RNN网络踩坑记录
问题介绍在构建LAS端到端语音识别网络模型时,encoder使用了nn.GRU,decoder使用了nn.LSTMCell,在单个GPU上训练时,一切正常,使用nn.DataParallel进行多GPU训练时,一直报错。问题在使用DataParallel时,pytorch会把forward函数参数里同一个batch的数据拆分到不同GPU里,而不会拆分形如http://self.xxx的类的属性拆分掉。如果检查属性量的device,可以发现它们初始化在cuda:0中后没有改变设备号。解决方案方案一原创 2020-06-26 22:17:37 · 900 阅读 · 1 评论 -
ASR学习经验分享
声明以下分享的学习经历和经验皆是本人亲身的学习经历,推荐的每本书和每个视频课都有认真读完或看完,基于此分享一些好的东西给有需要的人。相关基础要学习语音识别,DSP、线性代数以及一些基本编程能力肯定是要有的学习步骤首先是深度学习相关知识:大力推荐《Deep Learning》,这本书相信大家都很认可,时间有限的话重点看前两部分就行。视频课比较推荐台大李宏毅老师的“Machine Learning”,李老师讲的真的很好,B站以及Youtube上都有资源。然后是一些语音信号方面的知识:可以看看《语音原创 2020-05-29 21:02:33 · 890 阅读 · 0 评论 -
代码实现:基于百度API进行ASR
这是一份开源代码,你可以使用这个代码连接上百度的API以测试其ASR性能。你可以直接使用其中的 Recognition函数测试单条语音的识别,也可以如代码中所示,测试整个数据集的识别率,这里我们以TIMIT数据集为例,使用时请注意修改路径。代码地址:https://github.com/D-Keqi/Implementation-for-ASR-by-API-of-Baidu...原创 2020-05-25 22:58:44 · 616 阅读 · 0 评论 -
关于使用Pytorch时,训练集模型表现很好但测试集模型表现极差的原因
出现这一现象的原因主要有三个:训练数据集过小,导致系统泛化能力不足训练和测试时的model.train(), model.eval()没有设置好训练时数据集一定要打乱,Dataloader的shuffle一定要设置为True,这是初学者很容易犯的错误,不打乱,模型很容易学到一些和实验无关的信息,比如数据的顺序等,导致过拟合。...原创 2020-05-25 11:36:02 · 7329 阅读 · 0 评论 -
关于安装librosa的问题解决办法
问题librosa最好用conda 或者pip安装,但经常失败,也可以致谢手动下载安装,但是可能碰到各种不兼容的情况。解决办法首先手动下载安装librosapython setup.py install安装后,用pip install librosa再装一次可能会碰扫各种不兼容问题,最好把numba再装一次:pip3 install numba==0.48.0soundfile最容易不兼容,卸载后再重装,亲测可以成功import librosa...原创 2020-05-12 11:48:07 · 6658 阅读 · 3 评论 -
关于Anaconda创建新环境时,conda无法使用和下载数据包的黑科技解决办法
关于Anaconda创建新环境时,conda无法使用和下载数据包的黑科技解决办法遇到的问题解决办法结果遇到的问题在使用Anaconda创建新环境时,使用conda 在cmd中直接创建新环境时很方便的,可是如果碰到conda无法使用是怎么办,我就碰到过这样的问题,在网上也没有看到的好的解决办法。我的conda无法下载安装任何东西,由于Anaconda重装起来很麻烦,而且我使用的是Anaconda自带的spyer,因此不到万不得已不想重装。解决办法这里介绍一种很简单粗暴的方法。我在主系统上装好了pyto原创 2020-05-11 11:55:07 · 1839 阅读 · 0 评论