Swin Transformer实战:使用 Swin Transformer实现图像分类

标题

Swin Transformer简介

今年,微软亚洲研究院的Swin Transformer又开启了吊打CNN的模式,在速度和精度上都有很大的提高。这篇文章带你实现Swin Transformer图像分类

资料

论文: https://arxiv.org/abs/2103.14030

代码: https://github.com/microsoft/Swin-Transformer

论文翻译:https://wanghao.blog.csdn.net/article/details/120724040

环境配置

1、电脑环境:

操作系统:win10

CUDA版本:11.2

2、创建虚拟环境

3、安装pytorch

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch

4、安装timm

pip install timm==0.3.2

5、安装apex

APEX是英伟达开源的,完美支持PyTorch框架,用于改变数据格式来减小模型显存占用的工具。其中最有价值的是amp(Automatic Mixed Precision),将模型的大部分操作都用Float16数据类型测试,一些特别操作仍然使用Float32。并且用户仅仅通过三行代码即可完美将自己的训练代码迁移到该模型。实验证明,使用Float16作为大部分操作的数据类型,并没有降低参数,在一些实验中,反而由于可以增大Batch size,带来精度上的提升,以及训练速度上的提升。

5.1 下载apex

网址 https://github.com/NVIDIA/apex,下载到本地文件夹。解压后进入到apex的目录安装依赖。在执行命令;

cd C:\Users\WH\Downloads\apex-master #进入apex目录
pip install -r requirements.txt
5.2 安装apex

依赖安装完后,打开cmd,cd进入到刚刚下载完的apex-master路径下,运行

python setup.py install

出现以下界面
出现界面

6 安装一些其他的包
pip install opencv-python==4.4.0.46 termcolor==1.1.0 yacs==0.1.8

数据集

数据集采用最经典的猫狗大战数据集
kaggle链接
在这里插入图片描述

项目结构

Swin-Transformer-main
    ├─configs#配置文件
    ├─data#处理数据集相关的操作
    │ 
    ├─dataset #数据集结构
    │  ├─test
    │  ├─train
    │  │  ├─cat
    │  │  └─dog
    │  └─val
    │      ├─cat
    │      └─dog
    ├─figures
    ├─models#Swin的模型文件
    │ 
    ├─output#训练模型的输出

训练

1.获取代码和预训练模型

代码Github链接
在get_started.md找到预训练模型下载路径,下载下来然后放到Swin-Transformer根目录。

2.制作数据集

构建数据集,数据集结构如下:

dataset #数据集结构
    ├─test
    ├─train
    │  ├─cat
    │  └─dog
    └─val
   		├─cat
   		└─dog

从原数据集中取出一部分数据集放入train对应的类别中,一部分放入val对应的类别中。把原数据集中的test直接复制到test中。

3.代码更改

3.1 修改config.py文件
_C.DATA.DATA_PATH = 'dataset'
# Dataset name
_C.DATA.DATASET = 'imagenet'
# Model name
_C.MODEL.NAME = 'swin_tiny_patch4_window7_224'
# Checkpoint to resume, could be overwritten by command line argument
_C.MODEL.RESUME ='swin_tiny_patch4_window7_224.pth'
# Number of classes, overwritten in data preparation
_C.MODEL.NUM_CLASSES = 2

上面参数的解释:

_C.DATA.DATA_PATH :数据集路径的根目录,我定义为dataset。
_C.DATA.DATASET:数据集的类型,这里只有一种类型imagenet。
_C.MODEL.NAME:模型的名字,对应configs下面yaml的名字,会在模型输出的root目录创建对应MODEL.NAME的目录。
_C.MODEL.RESUME:预训练模型的目录。
_C.MODEL.NUM_CLASSES:模型的类别,默认是1000,按照数据集的类别数量修改

3.2 修改build.py

将nb_classes =1000改为nb_classes = config.MODEL.NUM_CLASSES

在这里插入图片描述

3.3 修改utils.py

由于类别默认是1000,所以加载模型的时候会出现类别对不上的问题,所以需要修改load_checkpoint方法。在加载预训练模型之前增加修改预训练模型的方法:

if checkpoint['model']['head.weight'].shape[0] == 1000:
    checkpoint['model']['head.weight'] = torch.nn.Parameter(
        torch.nn.init.xavier_uniform(torch.empty(config.MODEL.NUM_CLASSES, 768)))
    checkpoint['model']['head.bias'] = torch.nn.Parameter(torch.randn(config.MODELNUM_CLASSES))
msg = model.load_state_dict(checkpoint['model'], strict=False)

在这里插入图片描述

3.4 修改main.py

将92-94注释,如下图:
在这里插入图片描述
将312行修改为:torch.distributed.init_process_group(‘gloo’, init_method=‘file://tmp/somefile’, rank=0, world_size=1)
在这里插入图片描述

4.代码运行

打开Terminal,运行如下命令:

python main.py --cfg configs/swin_tiny_patch4_window7_224.yaml --local_rank 0 --batch-size 16

如果想单独验证,运行命令:

python  main.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./output/swin_tiny_patch4_window7_224/default/ckpt_epoch_1.pth --data-path dataset --local_rank 0

推理

import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import os
from models import build_model
from config import get_config
import argparse


def parse_option():
    parser = argparse.ArgumentParser('Swin Transformer Test script', add_help=False)
    parser.add_argument('--cfg', default='configs/swin_tiny_patch4_window7_224.yaml', type=str, metavar="FILE",
                        help='path to config file', )
    parser.add_argument(
        "--opts",
        help="Modify config options by adding 'KEY VALUE' pairs. ",
        default=None,
        nargs='+',
    )

    # easy config modification
    parser.add_argument('--batch-size', type=int, help="batch size for single GPU")
    parser.add_argument('--data-path', type=str, help='path to dataset')
    parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset')
    parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'],
                        help='no: no cache, '
                             'full: cache all data, '
                             'part: sharding the dataset into nonoverlapping pieces and only cache one piece')

    parser.add_argument('--pretrained',
                        help='pretrained weight from checkpoint, could be imagenet22k pretrained weight')
    parser.add_argument('--disable_amp', action='store_true', help='Disable pytorch amp')


    parser.add_argument('--resume', default='output/swin_tiny_patch4_window7_224/default/ckpt_epoch_49.pth',
                        help='resume from checkpoint')
    parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps")
    parser.add_argument('--use-checkpoint', action='store_true',
                        help="whether to use gradient checkpointing to save memory")
    parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'],
                        help='mixed precision opt level, if O0, no amp is used')
    parser.add_argument('--output', default='output', type=str, metavar='PATH',
                        help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)')
    parser.add_argument('--tag', help='tag of experiment')
    parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
    parser.add_argument('--throughput', action='store_true', help='Test throughput only')
    parser.add_argument("--local_rank", default='0', type=int, help='local rank for DistributedDataParallel')
    args, unparsed = parser.parse_known_args()

    config = get_config(args)

    return args, config


transform_test = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
classes = ("cat", "dog")
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
_, config = parse_option()
model = build_model(config)
checkpoint = torch.load('output/swin_tiny_patch4_window7_224/default/ckpt_epoch_49.pth', map_location='cpu')
model.load_state_dict(checkpoint['model'], strict=False)
model.eval()
model.to(DEVICE)

path = 'dataset/test/'
testList = os.listdir(path)
for file in testList:
    img = Image.open(path + file)
    img = transform_test(img)
    img.unsqueeze_(0)
    img = Variable(img).to(DEVICE)
    out = model(img)
    # Predict
    _, pred = torch.max(out.data, 1)
    print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))

运行结果
在这里插入图片描述
文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/121744503

Transformer图像二分类是指使用Transformer模型来进行图像分类任务。其中,ViT(Vision Transformer)是将Transformer引入到视觉领域的第一篇成功尝试的论文。在ViT的结构中,将图像分割成非重叠的patch,并将这些patch进行编码表示。然后通过Transformer的自注意力计算,对这些patch进行特征提取和组合。这样,就可以将图像转换为用Transformer进行处理的序列数据。ViT通过这种方式将图像转换为一系列的单词,并使用Transformer进行进一步的分类任务。 然而,ViT的非重叠Patch Embedding做法过于粗糙,没有充分提取Patch内部的局部自注意力信息。为了解决这个问题,一些研究者在ViT中嵌入了内层Transformer,同时进行Patch间的自注意力计算和Patch内部的自注意力计算。这样,就可以更好地提取图像中不同尺度和位置的物体特征。通过这种改进,可以提高Transformer图像分类任务中的性能。 总结起来,transformer图像二分类是通过使用Transformer模型,特别是ViT,来将图像转换为序列数据并进行分类。同时,通过改进ViT的非重叠Patch Embedding过程,可以更好地提取图像中的特征信息,从而提高分类性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Vision Transformer 必读系列之图像分类综述(二): Attention-based](https://blog.csdn.net/qq_39967751/article/details/125021505)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值