MyBatis 几种批量插入性能比较

批处理数据主要有三种方式:
1、反复执行单条插入语句
2、foreach 拼接 sql
3、批处理

一、前期准备

基于Spring Boot + Mysql,同时为了省略get/set,使用了lombok,详见pom.xml

1.1 表结构

id 使用数据库自增。

DROP TABLE IF EXISTS `user_info_batch`;
CREATE TABLE `user_info_batch` (
                           `id` bigint(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '主键id',
                           `user_name` varchar(100) NOT NULL COMMENT '账户名称',
                           `pass_word` varchar(100) NOT NULL COMMENT '登录密码',
                           `nick_name` varchar(30) NOT NULL COMMENT '昵称',
                           `mobile` varchar(30) NOT NULL COMMENT '手机号',
                           `email` varchar(100) DEFAULT NULL COMMENT '邮箱地址',
                           `gmt_create` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
                           `gmt_update` timestamp NULL DEFAULT NULL COMMENT '更新时间',
                           PRIMARY KEY (`id`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC COMMENT 'Mybatis Batch';
1.2 项目配置文件

细心的你可能已经发现,数据库url 后面跟了一段 rewriteBatchedStatements=true,有什么用呢?先不急,后面会介绍。

数据库配置
spring:
  datasource:
    url: jdbc:mysql://47.111.118.152:3306/mybatis?rewriteBatchedStatements=true
    username: mybatis
    password: password
    driver-class-name: com.mysql.cj.jdbc.Driver
mybatis
mybatis:
  mapper-locations: classpath:mapper/*.xml
  type-aliases-package: cn.van.mybatis.batch.entity
1.3 实体类
@Data
@Accessors(chain = true)
public class UserInfoBatchDO implements Serializable {
    private Long id;
    
    private String userName;

    private String passWord;

    private String nickName;

    private String mobile;

    private String email;

    private LocalDateTime gmtCreate;

    private LocalDateTime gmtUpdate;
}
1.4 UserInfoBatchMapper
public interface UserInfoBatchMapper {
    /** 单条插入
     * @param info
     * @return
     */
    int insert(UserInfoBatchDO info);

    /**
     * foreach 插入
     * @param list
     * @return
     */
    int batchInsert(List<UserInfoBatchDO> list);
}
1.5 UserInfoBatchMapper.xml
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="cn.van.mybatis.batch.mapper.UserInfoBatchMapper">


  <insert id="insert" parameterType="cn.van.mybatis.batch.entity.UserInfoBatchDO">
    insert into user_info_batch (user_name, pass_word, nick_name, mobile, email, gmt_create, gmt_update)
    values (#{userName,jdbcType=VARCHAR}, #{passWord,jdbcType=VARCHAR},#{nickName,jdbcType=VARCHAR}, #{mobile,jdbcType=VARCHAR}, #{email,jdbcType=VARCHAR}, #{gmtCreate,jdbcType=TIMESTAMP}, #{gmtUpdate,jdbcType=TIMESTAMP})
  </insert>

  <insert id="batchInsert">
    insert into user_info_batch (user_name, pass_word, nick_name, mobile, email, gmt_create, gmt_update)
    values
    <foreach collection="list" item="item" separator=",">
      (#{item.userName,jdbcType=VARCHAR}, #{item.passWord,jdbcType=VARCHAR}, #{item.nickName,jdbcType=VARCHAR}, #{item.mobile,jdbcType=VARCHAR}, #{item.email,jdbcType=VARCHAR}, #{item.gmtCreate,jdbcType=TIMESTAMP}, #{item.gmtUpdate,jdbcType=TIMESTAMP})
    </foreach>
  </insert>
</mapper>
1.6 预备数据

为了方便测试,抽离了几个变量,并进行提前加载。

private List<UserInfoBatchDO> list = new ArrayList<>();
private List<UserInfoBatchDO> lessList = new ArrayList<>();
private List<UserInfoBatchDO> lageList = new ArrayList<>();
private List<UserInfoBatchDO> warmList = new ArrayList<>();
// 计数工具
private StopWatch sw = new StopWatch();

为了方便组装数据,抽出了一个公共方法。

private List<UserInfoBatchDO> assemblyData(int count){
    List<UserInfoBatchDO> list = new ArrayList<>();
    UserInfoBatchDO userInfoDO;
    for (int i = 0;i < count;i++){
        userInfoDO = new UserInfoBatchDO()
                .setUserName("Van")
                .setNickName("风尘博客")
                .setMobile("17098705205")
                .setPassWord("password")
                .setGmtUpdate(LocalDateTime.now());
        list.add(userInfoDO);
    }
    return list;
}

预热数据

@Before
public void assemblyData() {
    list = assemblyData(200000);
    lessList = assemblyData(2000);
    lageList = assemblyData(1000000);
    warmList = assemblyData(5);
}

二、反复执行单条插入语句

可能‘懒’的程序员会这么做,很简单,直接在原先单条insert语句上嵌套一个for循环。

2.1 对应 mapper 接口
int insert(UserInfoBatchDO info);
2.2 测试方法

因为这种方法太慢,所以数据降低到 2000

@Test
public void insert() {
    log.info("【程序热身】");
    for (UserInfoBatchDO userInfoBatchDO : warmList) {
        userInfoBatchMapper.insert(userInfoBatchDO);
    }
    log.info("【热身结束】");
    sw.start("反复执行单条插入语句");
    // 这里插入 20w 条太慢了,所以我只插入了 2000 条
    for (UserInfoBatchDO userInfoBatchDO : lessList) {
        userInfoBatchMapper.insert(userInfoBatchDO);
    }
    sw.stop();
    log.info("all cost info:{}",sw.prettyPrint());
}
2.3 执行时间
  • 第一次
-----------------------------------------
ms     %     Task name
-----------------------------------------
59887  100%  反复执行单条插入语句
  • 第二次
-----------------------------------------
ms     %     Task name
-----------------------------------------
64853  100%  反复执行单条插入语句
  • 第三次
-----------------------------------------
ms     %     Task name
-----------------------------------------
58235  100%  反复执行单条插入语句

该方式插入2000 条数据,执行三次的平均时间:60991 ms

三、foreach 拼接SQL

3.1 对应mapper 接口
int batchInsert(List<UserInfoBatchDO> list);
3.2 测试方法

该方式和下一种方式都采用20w条数据测试。

@Test
public void batchInsert() {
    log.info("【程序热身】");
    for (UserInfoBatchDO userInfoBatchDO : warmList) {
        userInfoBatchMapper.insert(userInfoBatchDO);
    }
    log.info("【热身结束】");
    sw.start("foreach 拼接 sql");
    userInfoBatchMapper.batchInsert(list);
    sw.stop();
    log.info("all cost info:{}",sw.prettyPrint());
}
3.3 执行时间
  • 第一次
-----------------------------------------
ms     %     Task name
-----------------------------------------
18835  100%  foreach 拼接 sql
  • 第二次
-----------------------------------------
ms     %     Task name
-----------------------------------------
17895  100%  foreach 拼接 sql
  • 第三次
-----------------------------------------
ms     %     Task name
-----------------------------------------
19827  100%  foreach 拼接 sql

该方式插入20w 条数据,执行三次的平均时间:18852 ms

四、批处理

该方式 mapperxml 复用了 2.1

4.1 rewriteBatchedStatements 参数

我在测试一开始,发现改成 Mybatis Batch提交的方法都不起作用,实际上在插入的时候仍然是一条条记录的插,而且速度远不如原来 foreach 拼接SQL的方法,这是非常不科学的。

后来才发现要批量执行的话,连接URL字符串中需要新增一个参数: rewriteBatchedStatements=true

rewriteBatchedStatements参数介绍

MySqlJDBC连接的url中要加rewriteBatchedStatements参数,并保证5.1.13以上版本的驱动,才能实现高性能的批量插入。MySql JDBC驱动在默认情况下会无视executeBatch()语句,把我们期望批量执行的一组sql语句拆散,一条一条地发给MySql数据库,批量插入实际上是单条插入,直接造成较低的性能。只有把rewriteBatchedStatements参数置为true, 驱动才会帮你批量执行SQL。这个选项对INSERT/UPDATE/DELETE都有效。

4.2 批处理准备
手动注入 SqlSessionFactory
@Resource
private SqlSessionFactory sqlSessionFactory;
测试代码
@Test
public void processInsert() {
    log.info("【程序热身】");
    for (UserInfoBatchDO userInfoBatchDO : warmList) {
        userInfoBatchMapper.insert(userInfoBatchDO);
    }
    log.info("【热身结束】");
    sw.start("批处理执行 插入");
    // 打开批处理
    SqlSession session = sqlSessionFactory.openSession(ExecutorType.BATCH);
    UserInfoBatchMapper mapper = session.getMapper(UserInfoBatchMapper.class);
    for (int i = 0,length = list.size(); i < length; i++) {
        mapper.insert(list.get(i));
        //每20000条提交一次防止内存溢出
        if(i%20000==19999){
            session.commit();
            session.clearCache();
        }
    }
    session.commit();
    session.clearCache();
    sw.stop();
    log.info("all cost info:{}",sw.prettyPrint());
}
4.3 执行时间
  • 第一次
-----------------------------------------
ms     %     Task name
-----------------------------------------
09346  100%  批处理执行 插入
  • 第二次
-----------------------------------------
ms     %     Task name
-----------------------------------------
08890  100%  批处理执行 插入
  • 第三次
-----------------------------------------
ms     %     Task name
-----------------------------------------
09042  100%  批处理执行 插入

该方式插入20w 条数据,执行三次的平均时间:9092 ms

4.4 如果数据更大

当我把数据扩大到 100w 时,foreach 拼接sql的方式已经无法完成插入了,所以我只能测试批处理的插入时间。

测试时,仅需将 【4.2】测试代码中的list切成lageList测试即可。

  • 第一次
-----------------------------------------
ms     %     Task name
-----------------------------------------
32419  100%  批处理执行 插入
  • 第二次
-----------------------------------------
ms     %     Task name
-----------------------------------------
31935  100%  批处理执行 插入
  • 第三次
-----------------------------------------
ms     %     Task name
-----------------------------------------
33048  100%  批处理执行 插入

该方式插入100w 条数据,执行三次的平均时间:32467 ms
五、总结

批量插入方式数据量执行三次的平均时间
循环插入单条数据200060991 ms
foreach 拼接sql20w18852 ms
批处理20w9092 ms
批处理100w32467 ms
  1. 循环插入单条数据虽然效率极低,但是代码量极少,数据量较小时可以使用,但是数据量较大禁止使用,效率太低了;

  2. foreach 拼接sql的方式,使用时有大段的xml和sql语句要写,很容易出错,虽然效率尚可,但是真正应对大量数据的时候,依旧无法使用,所以不推荐使用;

  3. 批处理执行是有大数据量插入时推荐的做法,使用起来也比较方便。

本文示例代码

作者:VanFan
链接:https://juejin.cn/post/7007608714093920286
来源:稀土掘金

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值