pytorch训练网络时的iter和epoch

本文详细解析了深度学习网络的训练流程,包括迭代与epoch的概念,以及如何通过PyTorch框架进行网络训练,展示了损失函数的计算、反向传播和参数更新的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Iter------一次迭代,是指一个min_batch的一次forward+backward

Epoch------迭代完所有的训练数据(1次),称为一个epoch

# 训练网络
# 迭代epoch
for epoch in range(20):

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the input
        inputs, labels = data

        # zeros the paramster gradients
        optimizer.zero_grad()       # 

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)  # 计算loss
        loss.backward()     # loss 求导
        optimizer.step()    # 更新参数

        # print statistics
        running_loss += loss.item()  # tensor.item()  获取tensor的数值
        if i % 2000 == 1999:
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))  # 每2000次迭代,输出loss的平均值
            running_loss = 0.0

print('Finished Training')
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值