-
一、树的逻辑结构
1.树的定义
树:n(n≥0)个结点的有限集合。
当n=0时,称为空树;
任意一棵非空树满足以下条件:
⑴ 有且仅有一个特定的称为根的结点;
⑵ 当n>1时,除根结点之外的其余结点被分成m(m>0)个互不相交的有限集合T1,T2,… ,Tm,其中每个集合又是一棵树,并称为这个根结点的子树。
2.树的基本术语
结点的度:结点所拥有的子树的个数。
树的度:树中各结点度的最大值。
叶子结点:度为0的结点,也称为终端结点。
分支结点:度不为0的结点,也称为非终端结点。
孩子、双亲:树中某结点子树的根结点称为这个结点的孩子结点,这个结点称为它孩子结点的双亲结点;
兄弟:具有同一个双亲的孩子结点互称为兄弟。
路径:如果树的结点序列n1, n2, …, nk有如下关系:结点ni是ni+1的双亲(1<=i<k),则把n1, n2, …, nk称为一条由n1至nk的路径;路径上经过的边的个数称为路径长度。
祖先、子孙:在树中,如果有一条路径从结点x到结点y,那么x就称为y的祖先,而y称为x的子孙。
结点所在层数:根结点的层数为1;对其余任何结点,若某结点在第k层,则其孩子结点在第k+1层。
树的深度:树中所有结点的最大层数,也称高度。
层序编号:将树中结点按照从上层到下层、同层从左到右的次序依次给他们编以从1开始的连续自然数。
森林:m (m≥0)棵互不相交的树的集合。
2.树的遍历
树的前序遍历操作定义为:
若树为空,不进行遍历;否则
⑴ 访问根结点;
⑵ 按照从左到右的顺序前序遍历根结点的每一棵子树。
树的中序遍历操作定义为:
若树为空,不进行遍历;否则
⑴ 访问左子树,访问右子树;
⑴访问根节点。
树的后序遍历操作定义为:
若树为空,则遍历结束;否则
⑴ 按照从左到右的顺序后序遍历根结点的每一棵子树;
⑵ 访问根结点。
树的层序遍历操作定义为:
从树的第一层(即根结点)开始,自上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。
3.树的储存结构
双亲表示法:
用一维数组来存储树的各个结点(一般按层序存储),
数组中的一个元素对应树中的一个结点,
每个结点记录两类信息:结点的数据信息以及该结点的双亲在数组中的下标。
孩子表示法:
链表中的每个结点包括一个数据域和多个指针域,每个指针域指向该结点的一个孩子结点。
孩子兄弟表示法:
data:数据域,存储该结点的数据信息;
firstchild:指针域,指向该结点第一个孩子;
rightsib:指针域,指向该结点的右兄弟结点。
template <class T>
struct TNode{
T data;
TNode <T> *firstchild, *rightsib;
};
顺序存储:本质上是静态指针
双亲表示法
双亲、孩子表示法
链式存储:
多重链表示法
孩子链表表示法
孩子兄弟表示法
二、二叉树的逻辑结构
二叉树是n(n≥0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。
二叉树的特点:
⑴ 每个结点最多有两棵子树;
⑵ 二叉树是有序的,其次序不能任意颠倒。
特殊的二叉树:
斜树
1 .所有结点都只有左子树的二叉树称为左斜树;
2 .所有结点都只有右子树的二叉树称为右斜树;
3.左斜树和右斜树统称为斜树。
满二叉树
在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上。
完全二叉树
对一棵具有n个结点的二叉树按层序编号,如果编号为i(1≤i≤n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中的位置完全相同。
二叉树的基本特性
1.二叉树的第i层上最多有2i-1个结点(i≥1)。
2. 一棵深度为k的二叉树中,最多有2k-1个结点,最少有k个结点。
3. 在一棵二叉树中,如果叶子结点数为n0,度为2的结点数为n2,则有: n0=n2+1。
4.具有n个结点的完全二叉树的深度为 log2n +1。
5.对一棵具有n个结点的完全二叉树中从1开始按层序编号,则对于任意的序号为i(1≤i≤n)的结点(简称为结点i),有:
(1)如果i>1,则结点i的双亲结点的序号为 i/2;如果i=1,则结点i是根结点,无双亲结点。
(2)如果2i≤n,则结点i的左孩子的序号为2i;如果2i>n,则结点i无左孩子。
(3)如果2i+1≤n,则结点i的右孩子的序号为2i+1;如果2i+1>n,则结点 i无右孩子。
6.二叉树的顺序存储
void Preorder(int root, char data[]){
if(data[root]!='\0'){
cout<<data[root] ;
Preorder(2*root,data);
Preorder(2*root+1,data);}
return;
}
void InOrder(int root, char data[]){
if(data[root]!='\0'){
InOrder(2*root,data);
cout<<data[root] ;
InOrder(2*root+1,data);
}
return;
}
三、二叉链表
1.二叉链表:令二叉树的每个结点对应一个链表结点,链表结点除了存放与二叉树结点有关的数据信息外,还要设置指示左右孩子的指针。
其中,data:数据域,存放该结点的数据信息;
lchild:左指针域,存放指向左孩子的指针;
rchild:右指针域,存放指向右孩子的指针。
template <class T>
class BiTree{
public:
BiTree();
~BiTree( );
void PreOrder(){PreOrder(root);}
void InOrder() {InOrder(root);}
void PostOrder() {PostOrder(root);}
void LevelOrder();
private:
BiNode<T> *root;
void Creat(BiNode<T> *& root);
void Release(BiNode<T> *root);
void PreOrder(BiNode<T> *root);
void InOrder(BiNode<T> *root);
void PostOrder(BiNode<T> *root);
void LevelOrder(BiNode<T> *root);
};
template<class T>
BiTree<T>::BiTree( )
{
Creat(root);
}
中序遍历——递归算法
template <class T>
void BiTree::InOrder (BiNode<T> *root)
{
if (root==NULL) return;
else {
InOrder(root->lchild);
cout<<root->data;
InOrder(root->rchild);
}
}
template <class T>
void BiTree<T>::Creat(BiNode<T> * &root )
{
T ch;
cout<<"请输入创建一棵二叉树的结点数据"<<endl;
cin>>ch;
if (ch=="#") root = NULL;
else{
root = new BiNode<T>;
root->data=ch;
Creat(root->lchild );
Creat(root->rchild);
}
}
二叉树的非递归遍历总结
都是沿着左分支访问,直到左分支为空时,再依次对栈中节点的右分支进行处理。(遵循从左至右的遍历原则,体现深度优先搜索的思想)
前序遍历:每个节点只进栈一次,在进栈前访问节点
中序遍历:每个节点进栈一次,在出栈时访问节点
后序遍历:每个节点进栈两次,在第二次出栈时访问节点
二叉树的析构
template<class T>
void BiTree<T>::Release(BiNode<T>* root){
if (root != NULL){
Release(root->lchild); //释放左子树
Release(root->rchild); //释放右子树
delete root;
}
}
四、树的问题延伸
1.树中叶子节点的数目
左子树中叶子节点的数目+右子树中叶子节点的数目
template<class T>
int BiTree<T>::leafcount(BiNode<T>* root){
int number=0;if (root==NULL)
number=0;
else if(root->lchild==NULL && root->rchild==NULL)
number=1;
else
number=leafcount(root->lchild)+leafcount(root->rchild);
return number;
}
2.计算树的高度
template<typename T>
int BiTree<T>::cal_height(BiTreeNode<T> * root){
int lheight=0,rheight=0;
if (root==0) return 0;
lheight=cal_height(root->lchild);
rheight=cal_height(root->rchild);
if (lheight>rheight) return lheight+1;
else return rheight+1;
}
3.输出中缀表达式。并加上相应的括号
(a+(b*(c-d)))-(e/f)
基本思想
中序遍历。
中序遍历左子树前,输出左括号
中序遍历右子树后,输出右括号
如果遍历叶子结点的左右子树,不输出括号
如果遍历根节点的左右子树,不输出括号(否则,会得到形如(a+b)的表达式)
void BiTree<T>::In_Expression(BiNode<T>* root){
if(root)
{
if(root!=this->root&&root->lchild!=0&&root->rchild!=0)
cout<<"(";
In_Expression(root->lchild);
cout<<root->data;
In_Expression(root->rchild);
if(root!=this->root&&root->lchild!=0&&root->rchild!=0)
cout<<")";
}
}
4.三叉链表
在二叉链表的基础上增加了一个指向双亲的指针域。
其中:data、lchild和rchild三个域的含义同二叉链表的结点结构;
parent域为指向该结点的双亲结点的指针。
结点数据类型声明:
template<class T>
struct Node
{
T data;
Node<T> * lchild, *rchild,*parent;
};
5.森林转换为二叉树
⑴ 将森林中的每棵树转换成二叉树;
⑵ 从第二棵二叉树开始,
依次把后一棵二叉树的根结点作为前一棵二叉树根结点的右孩子,
当所有二叉树连起来后,此时所得到的二叉树就是由森林转换得到的二叉树。
6.二叉树转换为树或森林
⑴ 加线——若某结点x是其双亲y的左孩子,则把结点x的右孩子、右孩子的右孩子、……,都与结点y用线连起来;
⑵ 去线——删去原二叉树中所有的双亲结点与右孩子结点的连线;
⑶ 层次调整——整理由⑴、⑵两步所得到的树或森林,使之层次分明。
树与二叉树
最新推荐文章于 2024-04-16 18:54:19 发布