树与二叉树

  • 一、树的逻辑结构
    1.树的定义
    树:n(n≥0)个结点的有限集合。
      当n=0时,称为空树;
      任意一棵非空树满足以下条件:
    ⑴ 有且仅有一个特定的称为根的结点;
    ⑵ 当n>1时,除根结点之外的其余结点被分成m(m>0)个互不相交的有限集合T1,T2,… ,Tm,其中每个集合又是一棵树,并称为这个根结点的子树。
    2.树的基本术语
      结点的度:结点所拥有的子树的个数。
      树的度:树中各结点度的最大值。
      叶子结点:度为0的结点,也称为终端结点。
      分支结点:度不为0的结点,也称为非终端结点。
      孩子、双亲:树中某结点子树的根结点称为这个结点的孩子结点,这个结点称为它孩子结点的双亲结点;
      兄弟:具有同一个双亲的孩子结点互称为兄弟。 
      路径:如果树的结点序列n1, n2, …, nk有如下关系:结点ni是ni+1的双亲(1<=i<k),则把n1, n2, …, nk称为一条由n1至nk的路径;路径上经过的边的个数称为路径长度。 
      祖先、子孙:在树中,如果有一条路径从结点x到结点y,那么x就称为y的祖先,而y称为x的子孙。
      结点所在层数:根结点的层数为1;对其余任何结点,若某结点在第k层,则其孩子结点在第k+1层。
      树的深度:树中所有结点的最大层数,也称高度。
      层序编号:将树中结点按照从上层到下层、同层从左到右的次序依次给他们编以从1开始的连续自然数。
      森林:m (m≥0)棵互不相交的树的集合。 
    2.树的遍历  
    树的前序遍历操作定义为:
      若树为空,不进行遍历;否则
    ⑴ 访问根结点;
    ⑵ 按照从左到右的顺序前序遍历根结点的每一棵子树。 
    树的中序遍历操作定义为:
      若树为空,不进行遍历;否则
    ⑴ 访问左子树,访问右子树;
    ⑴访问根节点。
    树的后序遍历操作定义为:
      若树为空,则遍历结束;否则
    ⑴ 按照从左到右的顺序后序遍历根结点的每一棵子树;
    ⑵ 访问根结点。 
    树的层序遍历操作定义为:
    从树的第一层(即根结点)开始,自上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。 
    3.树的储存结构
    双亲表示法:
      用一维数组来存储树的各个结点(一般按层序存储),
      数组中的一个元素对应树中的一个结点,
      每个结点记录两类信息:结点的数据信息以及该结点的双亲在数组中的下标。 
    孩子表示法:
      链表中的每个结点包括一个数据域和多个指针域,每个指针域指向该结点的一个孩子结点。 
    孩子兄弟表示法:
      data:数据域,存储该结点的数据信息;
      firstchild:指针域,指向该结点第一个孩子;
      rightsib:指针域,指向该结点的右兄弟结点。 
    template   <class T>
    struct TNode{
         T data;
         TNode <T> *firstchild, *rightsib;
    };
    顺序存储:本质上是静态指针
      双亲表示法
      双亲、孩子表示法
    链式存储:
      多重链表示法
      孩子链表表示法
      孩子兄弟表示法    
    二、二叉树的逻辑结构
      二叉树是n(n≥0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。
    二叉树的特点:
    ⑴ 每个结点最多有两棵子树;
    ⑵ 二叉树是有序的,其次序不能任意颠倒。 
    特殊的二叉树:
    斜树
      1 .所有结点都只有左子树的二叉树称为左斜树;
      2 .所有结点都只有右子树的二叉树称为右斜树;
      3.左斜树和右斜树统称为斜树。
    满二叉树
      在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上。
    完全二叉树
      对一棵具有n个结点的二叉树按层序编号,如果编号为i(1≤i≤n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中的位置完全相同。
    二叉树的基本特性
    1.二叉树的第i层上最多有2i-1个结点(i≥1)。 
    2. 一棵深度为k的二叉树中,最多有2k-1个结点,最少有k个结点。 
    3. 在一棵二叉树中,如果叶子结点数为n0,度为2的结点数为n2,则有: n0=n2+1。 
    4.具有n个结点的完全二叉树的深度为 log2n  +1。 
    5.对一棵具有n个结点的完全二叉树中从1开始按层序编号,则对于任意的序号为i(1≤i≤n)的结点(简称为结点i),有: 
    (1)如果i>1,则结点i的双亲结点的序号为  i/2;如果i=1,则结点i是根结点,无双亲结点。 
    (2)如果2i≤n,则结点i的左孩子的序号为2i;如果2i>n,则结点i无左孩子。 
    (3)如果2i+1≤n,则结点i的右孩子的序号为2i+1;如果2i+1>n,则结点 i无右孩子。 
    6.二叉树的顺序存储
    void Preorder(int root, char data[]){
        if(data[root]!='\0'){
            cout<<data[root] ;            
            Preorder(2*root,data);
            Preorder(2*root+1,data);

        }
        return;
    }
    void InOrder(int root, char data[]){
        if(data[root]!='\0'){
            InOrder(2*root,data);
            cout<<data[root] ;            
             InOrder(2*root+1,data);    
        }
        return;
    }
    三、二叉链表
    1.二叉链表:令二叉树的每个结点对应一个链表结点,链表结点除了存放与二叉树结点有关的数据信息外,还要设置指示左右孩子的指针。 
    其中,data:数据域,存放该结点的数据信息;
                lchild:左指针域,存放指向左孩子的指针;
                rchild:右指针域,存放指向右孩子的指针。 
    template <class T>
    class BiTree{
    public:
           BiTree(); 
            ~BiTree( );            
            void PreOrder(){PreOrder(root);} 
            void InOrder() {InOrder(root);} 
            void PostOrder() {PostOrder(root);} 
            void LevelOrder();
      private:
            BiNode<T> *root; 
            void Creat(BiNode<T> *& root); 
            void Release(BiNode<T> *root);
            void PreOrder(BiNode<T> *root); 
            void InOrder(BiNode<T> *root); 
            void PostOrder(BiNode<T> *root); 
            void LevelOrder(BiNode<T> *root);
    };
    template<class T>
    BiTree<T>::BiTree( )
    {
        Creat(root);
    }
    中序遍历——递归算法 
    template <class T>
    void BiTree::InOrder (BiNode<T> *root)
    {
             if (root==NULL) return;     
             else {
                   InOrder(root->lchild); 
                   cout<<root->data; 
                   InOrder(root->rchild);
             }
    }
    template <class T>
    void BiTree<T>::Creat(BiNode<T> * &root  )
    {
        T ch;
        cout<<"请输入创建一棵二叉树的结点数据"<<endl;
        cin>>ch;
             if (ch=="#") root = NULL;
             else{ 
             root = new BiNode<T>; 
                      root->data=ch;
                      Creat(root->lchild );
                      Creat(root->rchild); 
        } 
    }
    二叉树的非递归遍历总结
    都是沿着左分支访问,直到左分支为空时,再依次对栈中节点的右分支进行处理。(遵循从左至右的遍历原则,体现深度优先搜索的思想)
    前序遍历:每个节点只进栈一次,在进栈前访问节点
    中序遍历:每个节点进栈一次,在出栈时访问节点
    后序遍历:每个节点进栈两次,在第二次出栈时访问节点
    二叉树的析构
    template<class T>
    void BiTree<T>::Release(BiNode<T>* root){
      if (root != NULL){                  
          Release(root->lchild);   //释放左子树
          Release(root->rchild);   //释放右子树
          delete root;
      }  
    }
    四、树的问题延伸
    1.树中叶子节点的数目
    左子树中叶子节点的数目+右子树中叶子节点的数目
    template<class T>
    int BiTree<T>::leafcount(BiNode<T>* root){
        int number=0;

        if (root==NULL)
            number=0;
        else if(root->lchild==NULL && root->rchild==NULL)
            number=1;
        else
            number=leafcount(root->lchild)+leafcount(root->rchild);
        return number;
    }
    2.计算树的高度
    template<typename T> 
     int BiTree<T>::cal_height(BiTreeNode<T> * root){
        int lheight=0,rheight=0;
        if (root==0)       return 0;    
    lheight=cal_height(root->lchild);
        rheight=cal_height(root->rchild);
        if (lheight>rheight)    return lheight+1;
        else         return rheight+1;
    }
    3.输出中缀表达式。并加上相应的括号
    (a+(b*(c-d)))-(e/f)
    基本思想
    中序遍历。
    中序遍历左子树前,输出左括号
    中序遍历右子树后,输出右括号
    如果遍历叶子结点的左右子树,不输出括号
    如果遍历根节点的左右子树,不输出括号(否则,会得到形如(a+b)的表达式)
    void BiTree<T>::In_Expression(BiNode<T>* root){
        if(root)
        {
             if(root!=this->root&&root->lchild!=0&&root->rchild!=0)
                        cout<<"(";
           In_Expression(root->lchild);
           cout<<root->data;
              In_Expression(root->rchild);
            if(root!=this->root&&root->lchild!=0&&root->rchild!=0)
                cout<<")";
        }
        
    }
    4.三叉链表
    在二叉链表的基础上增加了一个指向双亲的指针域。
    其中:data、lchild和rchild三个域的含义同二叉链表的结点结构;
    parent域为指向该结点的双亲结点的指针。 
    结点数据类型声明:
    template<class T>
    struct Node
    {
        T data;
        Node<T> * lchild, *rchild,*parent;
    };
    5.森林转换为二叉树 
    ⑴ 将森林中的每棵树转换成二叉树;
    ⑵ 从第二棵二叉树开始,
        依次把后一棵二叉树的根结点作为前一棵二叉树根结点的右孩子,
        当所有二叉树连起来后,此时所得到的二叉树就是由森林转换得到的二叉树。
    6.二叉树转换为树或森林 
    ⑴ 加线——若某结点x是其双亲y的左孩子,则把结点x的右孩子、右孩子的右孩子、……,都与结点y用线连起来;
    ⑵ 去线——删去原二叉树中所有的双亲结点与右孩子结点的连线;
    ⑶ 层次调整——整理由⑴、⑵两步所得到的树或森林,使之层次分明。 
     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值