本篇博客题目来自力扣网,分组为初级算法下的数组。适合作为数组方面的练习。上面刷题测试用例真的丰富,总是有很多考虑不到的地方。第一遍做完了,很多解法都不是最优解。主要是分享下。
数组
题目的话打开上面的链接就可以看到,这里就不复述了。
- 从排序数组中删除重复项
public int removeDuplicates(int[] nums) {
int index=0;
int size=nums.length;
while (index<size){
for (int i = index+1; i < size; i++) {
if(nums[i]==nums[index]){
for (int j = 0; j < size-1; j++) {
if(j<i){
nums[j]=nums[j];
}else {
nums[j]=nums[j+1];
}
}
size--;
}
}
index++;
if(index>=size){
continue;
}else if(nums[index]==nums[index-1]){
index--;
}
}
return size;
}
- 买卖股票的最佳时机 II
public int maxProfit(int[] prices) {
int money=0;
for (int i = 0; i < prices.length-1; i++) {
if(prices[i]<prices[i+1]){
money+=prices[i+1]-prices[i];
}
}
return money;
}
- 旋转数组
public void rotate(int[] nums, int k) {
int[] copyNums=new int[nums.length];
for (int i = 0; i < copyNums.length; i++) {
copyNums[i]=nums[i];
}
k=k%nums.length;
for (int i = 0; i < nums.length; i++) {
int x=0;
if(i<k){
x=nums.length-k+i;
nums[i]=copyNums[x];
}else {
x=i-k;
nums[i]=copyNums[x];
}
}
}
- 存在重复
public boolean containsDuplicate(int[] nums) {
Set<Integer> list=new HashSet<>();
for (int i = 0; i <nums.length ; i++) {
list.add(nums[i]);
}
return list.size()!=nums.length;
}
- 只出现一次的数字
public int singleNumber(int[] nums) {
for (int i = 0; i <nums.length ; i++) {
int x=1;
for (int j = 0; j < nums.length; j++) {
if(i!=j&&nums[i]==nums[j]){
x=2;
}
}
if(x==1){
return nums[i];
}
}
return 0;
}
- 两个数组的交集 II
public int[] intersect(int[] nums1, int[] nums2) {
ArrayList<Integer> list=new ArrayList<>();
ArrayList<Integer> num1indexList=new ArrayList<>();
ArrayList<Integer> indexList=new ArrayList<>();
for (int i = 0; i <nums1.length ; i++) {
for (int j = 0; j < nums2.length; j++) {
if(nums1[i]==nums2[j]){
if (indexList.size()>0){
int num=0;
for (int k = 0; k < indexList.size(); k++) {
if(indexList.get(k)==j){
num=1;
// System.out.println("相同j:"+ i+ " "+j);
}
}
for (int k = 0; k <num1indexList.size() ; k++) {
if(num1indexList.get(k)==i){
num=1;
// System.out.println("相同i:"+ i+ " "+j);
}
}
if(num==0){
num1indexList.add(i);
indexList.add(j);
list.add(nums2[j]);
}
}else {
num1indexList.add(i);
indexList.add(j);
list.add(nums2[j]);
}
}
}
}
int[] x=new int[list.size()];
for (int i = 0; i < x.length; i++) {
x[i]=list.get(i);
}
return x;
}
- 加一
public int[] plusOne(int[] digits) {
int[] newNums=new int[digits.length+1];
for (int i = digits.length-1; i >=0; i--) {
if(digits[i]==9){
digits[i]=0;
if(i==0){
newNums[0]=1;
for (int j = 1; j <newNums.length ; j++) {
newNums[j]=digits[j-1];
}
return newNums;
}
}else {
digits[i]=digits[i]+1;
break;
}
}
return digits;
}
- 移动零
public void moveZeroes(int[] nums) {
int sum=0;
for (int i = 0; i < nums.length; i++) {
if(nums[i]==0){
sum++;
}else if(sum>0&&nums[i]!=0){
//交换位置
nums[i-sum]=nums[i];
nums[i]=0;
}
}
}
- 两数之和
public int[] twoSum(int[] nums, int target) {
int[] result=new int[2];
for(int i=0;i<nums.length;i++){
for(int j=0;j<nums.length;j++){
if(nums[i]+nums[j]==target&&i!=j){
result[0]=i;
result[1]=j;
return result;
}
}
}
return result;
}
- 有效的数独
public boolean isValidSudoku(char[][] board) {
//方案2 一次遍历
for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board[i].length; j++) {
//一,横排判断
if(board[i][j]!='.'){
for (int k = j+1; k < board[i].length; k++) {
if(board[i][j]==board[i][k]){ return false; }
}
}
//二,竖排判断
if(board[j][i]!='.'){
for (int k = j+1; k <9 ; k++) {
if(board[j][i]==board[k][i]){ return false; }
}
}
//九方框判断
if(board[i][j]!='.'){
int x=getStartIndex(i);
int y=getStartIndex(j);
for (int k = x; k < x+3; k++) {
for (int l = y; l <y+3 ; l++) {
if(i!=k&&y!=l&&board[k][l]==board[i][j]){ return false; }
}
}
}
}
}
return true;
}
public static int getStartIndex(int x){
if(x<3){
return 0;
}else if(3<=x&&x<6){
return 3;
}else {
return 6;
}
}
- 旋转图像
这个解释下,将二维数组看做一个个口型的图案,一个包裹一个,4条边分别当做4个数组,旋转其实就是在这个4个数组中轮换。
public void rotate(int[][] matrix) {
int a1=0;
int a2=0;
int a3=0;
int len=matrix.length-1;
int num=matrix.length/2;
for (int n = 0; n < num; n++) {
for (int i = 0; i < len-2*n; i++) {
//第一个
a1=matrix[i+n][len-n];
matrix[i+n][len-n]=matrix[n][n+i];
//第二个
a2=matrix[len-n][len-i-n];
matrix[len-n][len-i-n]=a1;
//第三个
a3=matrix[len-i-n][n];
matrix[len-i-n][n]=a2;
//第四个
matrix[n][i+n]=a3;
}
}
}