CF-Div.2 D-Graph Subset Problem-找k大的完全图

题目

题意:

给你一个图,从图中找出一个子图:

  1. 这个子图中每个点的度大于等于k;
  2. 这个子图是 有k个点,并且是完全图。
    符合这两个中的 任意一个就行
    输出:
    符合 1 :
    第一行:1 和 子图的点数
    第二行:子图中点的编号
    符合 2 :
    第一行:2
    第二行:子图中点的编号

思路:

用拓扑把小于k的点都删掉,当要删的这个点的度是k-1的时候,判断下他是不是符合2,符合2就不要再找了,直接输出,不符合,删到最后肯定符合1 很容易能想到吧
所以现在问题就变成了怎么找 属于条件2的;
直接找这个点集 连出去的点,看下是不是都在这个点集内
这都不会,太菜了

#include<bits/stdc++.h>
#define ks ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define ft first
#define sd second
#define pb push_back
#define pf push_front
#define mp make_pair
#define bk back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int>pa;
typedef set<int>::iterator sit;
typedef multiset<int>::iterator msit;
template<class T>inline void read(T &res){
    char c;T flag=1;
    while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;res=c-'0';
    while((c=getchar())>='0'&&c<='9')res=res*10+c-'0';res*=flag;
}
void wenjian(){freopen("concatenation.in","r",stdin);freopen("concatenation.out","w",stdout);}
ll gcd(ll a,ll b){return b == 0 ? a : gcd(b,a % b);}
ll qpow(ll a,ll b,ll mod){a %= mod;ll ans = 1;while(b){if(b & 1)ans = ans * a % mod;a = a * a % mod;b >>= 1;}return ans;}
struct chongzai{int c; bool operator<(const chongzai &b )const{ return c>b.c; } }sss;
priority_queue<int,vector<int>,greater<int >>qqqqqq;  // 从小到大
const int maxn=3e5+177;
const int maxm=1e6+177;
const ll mod=1e18+7;
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
ll k;

int vis1[maxn],vis2[maxn];
int du[maxn];
vector<int >tuan;

vector<int >G[maxn];

ll n,m;
void add(int from,int to){
    G[from].pb(to);
    G[to].pb(from);
}
void init(int n){
    for(int i=0;i<n+17;i++){
        G[i].clear();
        du[i]=0;
        vis1[i]=0;
        vis2[i]=0;
    }
}

void deal(int now){

    queue<int >qu;
    for(int i=1;i<=n;i++){
        if(du[i]<now){
            vis1[i]=1;
            qu.push(i);
        }
    }

    bool ok=false;
    while(!qu.empty()){
        int x=qu.front();
        qu.pop();
        vis1[x]=1;
        if(du[x]==now-1){
            tuan.clear();
            tuan.pb(x);
            for(int i=0;i<G[x].size();i++){
                int y=G[x][i];

                if(vis2[y])continue;
                tuan.pb(y);
            }
            bool mark=false;
            for(int i=0;i<tuan.size();i++){
                for(int j=0;j<tuan.size();j++){
                    if(tuan[i]==tuan[j])break;

                    if(!binary_search(G[tuan[i]].begin(),G[tuan[i]].end(),tuan[j])){
                        mark=true;
                    }
                }
            }
            if(!mark){
                ok=true;
                break;
            }
            tuan.clear();
        }
        vis2[x]=1;
        for(int i=0;i<G[x].size();i++){
            int y=G[x][i];
            du[y]--;
            if(vis1[y])continue;
            if(du[y]<now){
                vis1[y]=1;
                qu.push(y);
            }
        }
    }
    if(ok){
        printf("2\n");
        for(int i=0;i<tuan.size();i++){

            printf("%d ",tuan[i]);
        }
        printf("\n");
    }else{
        int cnt=0;
        for(int i=1;i<=n;i++){
            if(!vis1[i]){
                cnt++;
            }
        }
        if(cnt>0){
            printf("1 %d\n",cnt);
            for(int i=1;i<=n;i++){
                if(!vis1[i]){
                    printf("%d ",i);
                }
            }
        }else{
            printf("-1");
        }
        printf("\n");
    }
}

int main(){
    int t;
    scanf("%d",&t);
    while(t--){
        scanf("%lld%lld%lld",&n,&m,&k);
        init(n);
        int be,en;
        for(int i=1;i<=m;i++){
            scanf("%d%d",&be,&en);
            add(be,en);
        }
        if(k*(k-1)>2*m){
            printf("-1\n");
            continue;
        }
        for(int i=1;i<=n;i++){
            du[i]=G[i].size();
            sort(G[i].begin(),G[i].end());
        }
        deal(k);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值