题意:
给你一个图,从图中找出一个子图:
- 这个子图中每个点的度大于等于k;
- 这个子图是 有k个点,并且是完全图。
符合这两个中的 任意一个就行
输出:
符合 1 :
第一行:1 和 子图的点数
第二行:子图中点的编号
符合 2 :
第一行:2
第二行:子图中点的编号
思路:
用拓扑把小于k的点都删掉,当要删的这个点的度是k-1的时候,判断下他是不是符合2,符合2就不要再找了,直接输出,不符合,删到最后肯定符合1 很容易能想到吧
所以现在问题就变成了怎么找 属于条件2的;
直接找这个点集 连出去的点,看下是不是都在这个点集内
这都不会,太菜了
#include<bits/stdc++.h>
#define ks ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define ft first
#define sd second
#define pb push_back
#define pf push_front
#define mp make_pair
#define bk back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int>pa;
typedef set<int>::iterator sit;
typedef multiset<int>::iterator msit;
template<class T>inline void read(T &res){
char c;T flag=1;
while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;res=c-'0';
while((c=getchar())>='0'&&c<='9')res=res*10+c-'0';res*=flag;
}
void wenjian(){freopen("concatenation.in","r",stdin);freopen("concatenation.out","w",stdout);}
ll gcd(ll a,ll b){return b == 0 ? a : gcd(b,a % b);}
ll qpow(ll a,ll b,ll mod){a %= mod;ll ans = 1;while(b){if(b & 1)ans = ans * a % mod;a = a * a % mod;b >>= 1;}return ans;}
struct chongzai{int c; bool operator<(const chongzai &b )const{ return c>b.c; } }sss;
priority_queue<int,vector<int>,greater<int >>qqqqqq; // 从小到大
const int maxn=3e5+177;
const int maxm=1e6+177;
const ll mod=1e18+7;
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
ll k;
int vis1[maxn],vis2[maxn];
int du[maxn];
vector<int >tuan;
vector<int >G[maxn];
ll n,m;
void add(int from,int to){
G[from].pb(to);
G[to].pb(from);
}
void init(int n){
for(int i=0;i<n+17;i++){
G[i].clear();
du[i]=0;
vis1[i]=0;
vis2[i]=0;
}
}
void deal(int now){
queue<int >qu;
for(int i=1;i<=n;i++){
if(du[i]<now){
vis1[i]=1;
qu.push(i);
}
}
bool ok=false;
while(!qu.empty()){
int x=qu.front();
qu.pop();
vis1[x]=1;
if(du[x]==now-1){
tuan.clear();
tuan.pb(x);
for(int i=0;i<G[x].size();i++){
int y=G[x][i];
if(vis2[y])continue;
tuan.pb(y);
}
bool mark=false;
for(int i=0;i<tuan.size();i++){
for(int j=0;j<tuan.size();j++){
if(tuan[i]==tuan[j])break;
if(!binary_search(G[tuan[i]].begin(),G[tuan[i]].end(),tuan[j])){
mark=true;
}
}
}
if(!mark){
ok=true;
break;
}
tuan.clear();
}
vis2[x]=1;
for(int i=0;i<G[x].size();i++){
int y=G[x][i];
du[y]--;
if(vis1[y])continue;
if(du[y]<now){
vis1[y]=1;
qu.push(y);
}
}
}
if(ok){
printf("2\n");
for(int i=0;i<tuan.size();i++){
printf("%d ",tuan[i]);
}
printf("\n");
}else{
int cnt=0;
for(int i=1;i<=n;i++){
if(!vis1[i]){
cnt++;
}
}
if(cnt>0){
printf("1 %d\n",cnt);
for(int i=1;i<=n;i++){
if(!vis1[i]){
printf("%d ",i);
}
}
}else{
printf("-1");
}
printf("\n");
}
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%lld%lld%lld",&n,&m,&k);
init(n);
int be,en;
for(int i=1;i<=m;i++){
scanf("%d%d",&be,&en);
add(be,en);
}
if(k*(k-1)>2*m){
printf("-1\n");
continue;
}
for(int i=1;i<=n;i++){
du[i]=G[i].size();
sort(G[i].begin(),G[i].end());
}
deal(k);
}
}