目标检测
文章平均质量分 65
猫脸码客: catCode2024
编程是一种艺术,也是一种科学
展开
-
铁路故障多分类数据集(猫脸码客 第183期 )
针对东南亚铁路线路缺陷频发的问题,本研究开发了基于深度学习的ECARRNet自动故障检测算法,该算法通过集成卷积自编码器、ResNet与循环神经网络,实现了对铁路轨道及紧固件缺陷的高效检测。实验结果显示,ECARRNet在自建数据集上表现出色,整体准确率达93.28%,对轨道和紧固件缺陷的识别准确率分别为98.59%和92.06%,显著优于现有先进模型。同时,采用Grad-CAM和LIME技术验证了模型结果的可解释性,表明ECARRNet能更精准地分类和检测故障区域。原创 2024-09-09 10:04:09 · 1109 阅读 · 0 评论 -
论文解读汇总(目标检测、目标跟踪、语义分割....)定期更新
第18期 论文解读——RetinaNet(目标检测)第19期 论文解读——CenterNet(目标检测)第20期 论文解读——CornerNet(目标检测)第11期 论文解读——YOLOv10(目标检测)第10期 论文解读——YOLOv9(目标检测)第15期 论文解读——SPPNet(目标检测)第1期 论文解读——YOLOv1(目标检测)第2期 论文解读——YOLOv2(目标检测)第3期 论文解读——YOLOv3(目标检测)第4期 论文解读——YOLOv4(目标检测)原创 2024-09-02 16:39:02 · 277 阅读 · 0 评论 -
目标检测简述
在过去的几年中,目标检测领域取得了显著的进展,主要得益于深度学习技术的发展。典型的目标检测任务要求在图像中标定一个边界框,描述目标的位置和形状,通常伴随着目标类别的标签。目标检测是计算机视觉领域的一项关键任务,旨在识别图像或视频中存在的目标,并确定其在图像中的位置和边界框。领域自适应技术旨在提高模型在新领域中的泛化性能,通过在不同领域的数据上进行训练和微调来适应不同的场景。除了深度学习的应用,目标检测领域还涌现出一系列新的技术和方法,以不断提高准确性、效率和通用性。原创 2023-12-28 15:38:11 · 515 阅读 · 0 评论