基于redis(lua)和zookeeper分布式锁(秒杀)实现,分布式接口幂等,分布式速率限制器,分布式ID生成器.

本文探讨了分布式系统中幂等问题的重要性,介绍了几种实现幂等性的技术方案,包括唯一索引、token机制、分布式锁。详细讨论了基于Redis和Zookeeper实现接口幂等的策略,以及在分布式秒杀场景中的应用。此外,还提到了分布式速率限制器的实现,以限制特定资源的访问频率。
摘要由CSDN通过智能技术生成

最近的项目中遇到分布式幂等问题,在本文中,我将用一个简单demo,简单阐述下使用分布式锁解决幂等问题以及分布式环境下秒杀扣库存并发问题的解决基本思路。

推荐视频链接

什么是分布式系统的幂等性

现如今我们的系统大多拆分为分布式SOA,或者微服务,一套系统中包含了多个子系统服务,而一个子系统服务往往会去调用另一个服务,而服务调用服务无非就是使用RPC通信或者restful,既然是通信,那么就有可能再服务器处理完毕后返回结果的时候挂掉,这个时候用户端发现很久没有反应,那么就会多次点击按钮,这样请求有多次,那么处理数据的结果是否要统一呢?那是肯定的!尤其再支付场景。

幂等性:就是用户对于同一操作发起的一次请求或者多次请求的结果是一致的,不会因为多次点击而产生了副作用。举个最简单的例子,那就是支付,用户购买商品使用约支付,支付扣款成功,但是返回结果的时候网络异常,此时钱已经扣了,用户再次点击按钮,此时会进行第二次扣款,返回结果成功,用户查询余额返发现多扣钱了,流水记录也变成了两条...

幂等就是一个操作,不论执行多少次,产生的效果和返回的结果都是一样的.

防范POST重复提交

HTTP POST 操作既不是安全的,也不是幂等的(至少在HTTP规范里没有保证)。 当我们因为反复刷新浏览器导致多次提交表单,多次发出同样的POST请求,导致远端服务器重复创建出了资源。

所以,对于电商应用来说,第一对应的后端 WebService 一定要做到幂等性,第二服务器端收到 POST 请求,在操作成功后必须302跳转到另外一个页面,这样即使用户刷新页面,也不会重复提交表单。

接口api的幂等性支持

对外提供接口为了支持幂等调用,接口有两个字段必须传,一个是来源source,一个是来源方序列号seq,这个两个字段在提供方系统里面做联合唯一索引,这样当第三方调用时,先在本方系统里面查询一下,是否已经处理过,返回相应处理结果;没有处理过,进行相应处理,返回结果。注意,为了幂等友好,一定要先查询一下,是否处理过该笔业务,不查询直接插入业务系统,会报错,但实际已经处理了。

幂等的技术方案

唯一索引,防止新增脏数据

唯一索引或唯一组合索引来防止新增数据存在脏数据
(当表存在唯一索引,并发时新增报错时,再查询一次就可以了,数据应该已经存在了,返回结果即可)

token机制,防止页面重复提交
  1. 数据提交前要向服务的申请token,token放到redis或jvm内存,token有效时间
  2. 提交后后台校验token,同时删除token,生成新的token返回

redis要用删除操作来判断token,删除成功代表token校验通过,如果用select+delete来校验token,存在并发问题,不建议使用 。

使用唯一id解决重复提交问题(类似redis的删除token判断)

使用类似乐观锁的version机制实现; 
分布式锁(redis的setnx); 
2.1.2 使用唯一id解决重复交易的幂等性问题(类似redis存token)

基于幂等性的解决方案中一个完整的取钱流程被分解成了两个步骤:

  • 调用create_ticket()获取ticket_id;

  • 调用 idempotent_withdraw(ticket_id, account_id, amount)。

虽然create_ticket不是幂等的,但在这种设计下,它对系统状态的影响可以忽略,加上idempotent_withdraw 是幂等的,所以任何一步由于网络等原因失败或超时,客户端都可以重试,直到获得结果。

悲观锁

获取数据的时候加锁获取 
select * from table_xxx where id=’xxx’ for update; 
注意:id字段一定是主键或者唯一索引,不然是锁表,会死人的 
悲观锁使用时一般伴随事务一起使用,数据锁定时间可能会很长,根据实际情况选用

乐观锁

乐观锁只是在更新数据那一刻锁表,其他时间不锁表,所以相对于悲观锁,效率更高。

乐观锁的实现方式多种多样可以通过version或者其他状态条件: 
1. 通过版本号实现 
update table_xxx set name=#name#,version=version+1 where version=#version#

  1. 通过条件限制 
    update table_xxx set avai_amount=avai_amount-#subAmount# where avai_amount-#subAmount# >= 0 
    要求:quality-#subQuality# >= ,这个情景适合不用版本号,只更新是做数据安全校验,适合库存模型,扣份额和回滚份额,性能更高。

注意:乐观锁的更新操作,最好用主键或者唯一索引来更新,这样是行锁,否则更新时会锁表,上面两个sql改成下面的两个更好 
update table_xxx set name=#name#,version=version+1 where id=#id# and version=#version# 
update table_xxx set avai_amount=avai_amount-#subAmount# where id=#id# and avai_amount-#subAmount# >= 0

分布式锁

如果是分布是系统,构建全局唯一索引比较困难,例如唯一性的字段没法确定,这时候可以引入分布式锁,通过第三方的系统(redis或zookeeper),在业务系统插入数据或者更新数据,获取分布式锁,然后做操作,之后释放锁,这样其实是把多线程并发的锁的思路,引入多多个系统,也就是分布式系统中得解决思路。

何为分布式锁

分布式锁是控制分布式系统之间同步访问共享资源的一种方式。在分布式系统中,常常需要协调他们的动作。如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要互斥来防止彼此干扰来保证一致性,在这种情况下,便需要使用到分布式锁。

我们来假设一个最简单的秒杀场景:数据库里有一张表,column分别是商品ID,和商品ID对应的库存量,秒杀成功就将此商品库存量-1。现在假设有1000个线程来秒杀两件商品,500个线程秒杀第一个商品,500个线程秒杀第二个商品。我们来根据这个简单的业务场景来解释一下分布式锁。
通常具有秒杀场景的业务系统都比较复杂,承载的业务量非常巨大,并发量也很高。这样的系统往往采用分布式的架构来均衡负载。那么这1000个并发就会是从不同的地方过来,商品库存就是共享的资源,也是这1000个并发争抢的资源,这个时候我们需要将并发互斥管理起来。这就是分布式锁的应用。
而key-value存储系统,如redis,因为其一些特性,是实现分布式锁的重要工具。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值