第十二届蓝桥杯大赛软件赛省赛 C/C++ 大学 A 组 砝码称重

本文探讨了使用N个不同重量的砝码通过天平称重的问题,提出了两种算法:一种是动态规划算法,时间复杂度为O(nm),另一种是通过暴力枚举的方式解决。动态规划算法利用二维数组记录每个重量是否能够被称出,而暴力枚举算法则是通过递归深度优先搜索的方式找出所有可能的砝码组合。
摘要由CSDN通过智能技术生成

题目描述

你有一架天平和 N 个砝码,这 N 个砝码重量依次是 W1,W2,⋅⋅⋅,WN。

请你计算一共可以称出多少种不同的正整数重量?

注意砝码可以放在天平两边。


算法1

(dp) O ( n m ) O(nm) O(nm)

由实际含义可以,f[i][j]=f[i][-j] 因为可以通过镜像的操作而得到,故而f[i][j-w]=f[i][w-j]=f[i][abs(j-w)]。就避免了数组下标为负数的情况
2.png

C++ 代码
#include <bits/stdc++.h>

using namespace std;

const int N = 110, M = 2e5 + 10;
int sum;
int n;
int w[N];
bool f[N][M];

int main() {
    
    cin>>n;
    for (int i = 1; i <= n; i++)
    {
        scanf("%d", &w[i]);
        sum+=w[i];
    }
    
    f[0][0]=true;

    for (int i = 1; i <= n;i++)
        for (int j = 0; j <=sum;j++)
            f[i][j]=f[i-1][j]||f[i-1][j+w[i]]||f[i-1][abs(j-w[i])];
                //只要有一个非空,f[i][j]就非空
    int ans = 0;
    for (int i = 1; i <=sum;i++)
        if(f[n][i])ans++;//不为零说明可以选出这个质量的砝码

    cout << ans;

    return 0;
}

 

算法2

(暴力枚举 过一半的数据)
C++ 代码
#include<stdio.h> 
int n;
int res;
int w[1000000]; 
bool st[100000];
void dfs(int k,int sum)//表示k个的砝码,重量是sum 
{
	if(k>n)//k>n 说明选完n个砝码 
	{
		if(sum>0&&!st[sum])// 判断选出来的n个砝码的重量是否没被标记过 ,如没标记则答案加1 
		{
			res++;
			st[sum]=true;//标记这个重量 
			return;
		}	
	}
	//还没选够n个砝码 
	else
	{
		dfs(k+1,sum-w[k]);//砝码放右边 
		dfs(k+1,sum);//跳过,不适用当前的砝码 
		dfs(k+1,sum+w[k]);//砝码放左边 
	}
}
int main()
{
	scanf("%d",&n); 
	for(int i=1;i<=n;i++)scanf("%d",&w[i]); 
	
	dfs(0,0);
	printf("%d",res); 
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值