题目描述
你有一架天平和 N 个砝码,这 N 个砝码重量依次是 W1,W2,⋅⋅⋅,WN。
请你计算一共可以称出多少种不同的正整数重量?
注意砝码可以放在天平两边。
算法1
(dp) O ( n m ) O(nm) O(nm)
由实际含义可以,f[i][j]=f[i][-j] 因为可以通过镜像的操作而得到,故而f[i][j-w]=f[i][w-j]=f[i][abs(j-w)]。就避免了数组下标为负数的情况
C++ 代码
#include <bits/stdc++.h>
using namespace std;
const int N = 110, M = 2e5 + 10;
int sum;
int n;
int w[N];
bool f[N][M];
int main() {
cin>>n;
for (int i = 1; i <= n; i++)
{
scanf("%d", &w[i]);
sum+=w[i];
}
f[0][0]=true;
for (int i = 1; i <= n;i++)
for (int j = 0; j <=sum;j++)
f[i][j]=f[i-1][j]||f[i-1][j+w[i]]||f[i-1][abs(j-w[i])];
//只要有一个非空,f[i][j]就非空
int ans = 0;
for (int i = 1; i <=sum;i++)
if(f[n][i])ans++;//不为零说明可以选出这个质量的砝码
cout << ans;
return 0;
}
算法2
(暴力枚举 过一半的数据)
C++ 代码
#include<stdio.h>
int n;
int res;
int w[1000000];
bool st[100000];
void dfs(int k,int sum)//表示k个的砝码,重量是sum
{
if(k>n)//k>n 说明选完n个砝码
{
if(sum>0&&!st[sum])// 判断选出来的n个砝码的重量是否没被标记过 ,如没标记则答案加1
{
res++;
st[sum]=true;//标记这个重量
return;
}
}
//还没选够n个砝码
else
{
dfs(k+1,sum-w[k]);//砝码放右边
dfs(k+1,sum);//跳过,不适用当前的砝码
dfs(k+1,sum+w[k]);//砝码放左边
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&w[i]);
dfs(0,0);
printf("%d",res);
}