- 博客(26)
- 收藏
- 关注
原创 mmdetection的生物图像实例分割三:自定义数据集的测试与分析
mmdetection是一个比较容易入门且上手的深度学习检测框架,其官网为,相关文档。版本为mmdetection 3.3.0.这里可供借鉴。
2024-06-06 22:47:50
1205
1
原创 mmdetection的生物图像实例分割二:自定义数据集注册与模型训练
mmdetection是一个比较容易入门且上手的深度学习检测框架,其官网为,相关文档。我们默认机器上意见安装完成该框架,并能实现文档中的demo。我安装的版本是mmdetection 3.3.0.这里可供借鉴。
2024-06-05 00:33:01
1148
原创 mmdetection的生物图像实例分割一:自定义数据集制作
最近尝试做一些细胞器,细胞结构的重建任务,需要验证一些实例分割模型,例如MRCNN,和生物医学图像中常用的nnUNet等语义分割模型的优劣。而在mmdetection 3.3.0中,一些常用的接口进行了较大的改变,这里索性记录步骤,方便后续的分享与学习。本次的数据集选择了AC3AC4电镜数据集,分辨率为29nm×6nm×6nm29nm×6nm×6nm,成像方式是SBEM,样本取自小鼠大脑皮层,是哈佛大学Kasthuri15数据的子集。其中AC3体块大小为256×。
2024-06-04 23:07:47
1357
原创 could not import name ‘lzw_decode’from ‘imagecodecs‘
读写tiff文件并转换为exe程序出现闪退bug解决
2023-06-19 10:32:30
516
原创 error: command ‘C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.1\\bin\\nvcc.exe‘ failed
项目场景:在win10(CUDA10.1, pytorch=1.8.1)第三方库Detectron2(version==0.6)安装后进行编译时python setup.py build报错的第一条信息为:cpp_extension.py:335: UserWarning: Attempted to use ninja as the BuildExtension backend but we could not find ninja.. Falling back to using the slow
2022-02-17 16:16:52
9935
原创 detectron2入门学习三:以FruitsNut为例阅读学习detectron2训练数据加载及图像处理
目标:阅读学习detectron2训练数据加载及图像处理一、build_detection_train_loader数据处理的基本流程:在模型训练的过程中,主要的代码如下: trainer = DefaultTrainer(cfg) trainer.resume_or_load(resume=False) trainer.train()其中最主要的代码是构建一个默认的训练器DefaultTrainer(cfg),进入函数主体,可以看出训练器的构建分为模型、优化器、训练数据
2022-02-10 11:33:52
3416
原创 detectron2入门学习二:实现FruitsNut水果坚果分割任务数据集Mask与coco格式转换处理
学习目标:提示:这里可以添加学习目标例如:一周掌握 Java 入门知识学习内容:提示:这里可以添加要学的内容例如:1、 搭建 Java 开发环境2、 掌握 Java 基本语法3、 掌握条件语句4、 掌握循环语句学习时间:提示:这里可以添加计划学习的时间例如:1、 周一至周五晚上 7 点—晚上9点2、 周六上午 9 点-上午 11 点3、 周日下午 3 点-下午 6 点学习产出:提示:这里统计学习计划的总量例如:1、 技术笔记 2 遍2、CSDN 技术博客 3 篇
2022-02-05 09:52:12
3727
2
原创 detectron2入门学习一:实现FruitsNut水果坚果分割任务以源码阅读
学习目标:学习detectron2数据集的注册以及基本的训练推理一.工程文件下载与数据集准备:整体的工程文件在项目中如图所示:水果坚果的实例分割网络这里采用mask_rcnn_R_50_FPN_3x作为例子,网络结构参数在工程文件中已经设置好,如果后续需要更改可以自己进行。网络预训练权重在官网的https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md进行相应权重的下载(标红点处)放在output文件夹中。
2022-01-29 11:19:13
3378
4
原创 ‘labelme‘ 不是内部或外部命令,也不是可运行的程序问题解决
文章目录一、安装labelme1.创建虚拟环境2.安装pyqt支持库3.安装Labelme二、lableme启动一、安装labelme1.创建虚拟环境命令行输入conda create --name=labelme python=3.6选择"y"完成创建输入conda activate labelme进入虚拟环境2.安装pyqt支持库输入conda install pyqt进行安装3.安装Labelme输入pip install labelme进行安装安
2021-08-22 21:33:09
19889
14
原创 从虚拟机到深度学习四:Ubuntu20.04环境,VScode的python环境构建与detectron2的简要调试
文章目录前言:Ubuntu的文件结构与VScode的快捷键汇总1.Ubuntu的文件结构2.VScode的快捷键汇总一、VScode中python项目的基本使用二、使用步骤1.引入库2.读入数据总结前言:Ubuntu的文件结构与VScode的快捷键汇总1.Ubuntu的文件结构由于后续的开发主要以图形化界面开发,对于Ubuntu操作系统与VScode应该有一定的了解,这里简要收集一下大致情况打开文件夹,点击other locations->computer,可以看到完整的Ubuntu文件目
2021-08-15 22:38:16
1457
原创 从虚拟机到深度学习三:Ubuntu20.04安装pytorch以及detectron2环境
文章目录一、虚拟机CUDA踩坑二、detectron2安装1.创建虚拟环境2.安装pytorch3.安装库numpy,matplotlib4.安装库opencv-python5.安装pillow,cython库6.安装pycocotools7.fvcore8.detectron2安装一、虚拟机CUDA踩坑经过多次尝试后发现,VMware虚拟机的显卡是虚拟显卡,不支持GPU加速,我们采用CPU的方式进行detectron2的学习安装。选择安装后出现的错误:二、detectron2安装1.创建虚
2021-08-14 10:51:42
6562
原创 从虚拟机到深度学习二:Ubuntu20.04中anaconda3、VScode等常用环境的安装
文章目录一、输入法安装1.安装fcitx-googlepinyin2.配置language support3.输入法配置二、git安装2.读入数据三、安装Anaconda3四、gcc / g++ 安装五、visual studio code安装1.VScode安装2.安装VSCode所需依赖3.安装VScode插件六、Ubuntu一些使用技巧:1.文件路径复制2.活动栏添加删除3.软件安装位置查找总结一、输入法安装1.安装fcitx-googlepinyin点击左下角的show applicat
2021-08-11 13:23:00
3083
原创 阿里云配置ubuntu图形化界面
购买阿里云ECS服务器:阿里云官网地址:https://www.aliyun.com/点击云服务器ECS,根据自身情况进行选购购买后点击控制台,找到实例:找到自己的服务器实例:点击更多->云盘镜像->更换操作系统,进行操作系统的选择:ubuntu升级与图形化展示:远程连接,选择workbench登陆进去后,命令行输入下面代码,进行更新apt-get updateapt-get upgradeapt-get install ubuntu-desktop重启服
2021-08-10 21:21:48
2971
2
原创 windows中cuda版本切换
一、安装:cuda的安装教程较多,可以参考的博客:https://blog.csdn.net/zsc201825/article/details/91129403安装后的默认地址:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA本人安装了CUDA8.0与CUDA10.0两个版本,文件图如图所示:二、版本切换:1.方法一(推荐):右击我的电脑,点击属性,左上角选择高级系统设置:选择环境变量系统变量中的CUDA_PATH,NVCUDAS
2021-08-02 19:08:14
9019
原创 Mask R-CNN pythoch版windows环境配置
硬件需求:win10系统,pycharm,NIVIDA显卡以及下载好的Cuda源码地址:https://github.com/facebookresearch/maskrcnn-benchmark文章目录前言一、创建虚拟环境二、安装对应库1.pytorch2.ipython等其余安装包3.检验环境三、安装cocoapi四、安装深度学习加速库apex五、安装maskrcnn benchmark总结前言打开命令提示符,输入命令nvcc --version,查看显卡配置:C:\WINDOWS\.
2021-08-02 17:15:11
2696
原创 argparse模块学习笔记
argsparse是python的命令行解析的标准模块,我们可以直接使用该模块利用电脑的命令行运行相关程序文章目录一、利用argparse模块传入参数二、利用argparse模块进行多个参数的传入三、可选参数、默认参数与必须参数的设置2.读入数据总结一、利用argparse模块传入参数新建一个python文件,命名为demo.py,我们输入以下代码:# 导入模块import argparse# 创建一个解析对象parser = argparse.ArgumentParser(descri.
2021-07-30 20:40:31
297
原创 int数据类型相加,结果为float情况
运用numpy进行运算出现如下的情况:import numpy as npdataset=np.array([1],dtype=np.int64)data_int=dataset[0]type(data_int)Out[5]: numpy.int64type(data_int+1)Out[6]: numpy.int64dataset=np.array([1],dtype=np.uint64)data_uint=dataset[0]type(data_uint)Out[9]: num
2021-07-30 09:29:02
1056
原创 cremi_python-master文件解读与踩坑记录
cremi_python-master文件解读与踩坑记录使用Anaconda,环境为pycharm2020.2,python3.6此贴主要涉及代码python2与python3的转换、hdf5文件的使用,以便后续学习使用文章目录cremi_python-master文件解读与踩坑记录前言一、example_write.py调试与解读1.文件之间的调用更改2.print使用差异3.数据的写入出现问题4.编码形式出现问题5.example_write.py源码解读二、example_read.py调试与
2021-07-29 19:56:34
819
原创 keras Faster RCNN运行指南:measure_map.py运行踩坑记录
keras Faster RCNN运行指南:measure_map.py运行踩坑记录源码地址:https://github.com/moyiliyi/keras-faster-rcnn操作系统:win10版本:python3.6tensorflow-GPU:1.4.0keras:2.0.8一、‘gbk’ codec can’t decode byte 0x80 in position 0: illegal multibyte sequence错误原因:是在打开文件时,缺少读写方式:‘gbk
2021-03-29 16:53:41
338
1
原创 Unet预测的结果为灰色的方块
Unet预测的结果为灰色的方块,使用io.imsave时出现UserWarning: XXX/XX.png is a low contrast image原因:保存的图片为低对比度图片,可能是网络模型训练不完全,或者学习速率太高,迭代次数太少。解决方案:重新运行网络,降低学习速率,或者增加迭代次数...
2020-12-31 21:54:06
3265
原创 使用keras.models.load_model程序出现错误`save_model` requires h5py.
使用keras.models.load_model程序出现错误save_model requires h5py.问题描述:目前程序已经正确安装h5py包,运行一些程序可以进行hdf5文件保存,但有一些文件出错。原因分析:在该程序的其他地方使用tables这个库进行了hdf5文件的读写,而import h5py 与import tables可能出现冲突,因此会出错。解决方案:使用h5py库进行hdf5文件的读写...
2020-12-28 12:44:57
1390
AC3AC4神经元突触分割数据集
2024-06-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人