实验一:系统响应及系统稳定性
一、实验目的
1、 掌握求系统响应的方法;
2、 掌握时域离散系统的时域特性;
3、 分析、观察及检验系统的稳定性。
二、实验原理及方法
1、 递推法求解差分方程的解;
2、 yn=filter(B,A,xn)函数,用于求解差分方程,B表示y(n)系数,A表示x(n)系数,xn表示输入函数,本函数用于求零状态响应;
3、 yn=conv(x1n,x2n)函数,用于求x1n和x2n的卷积和;
4、 MATLAB中检测系统稳定性的可行方法是:在系统的输入端加入单位阶跃序列,如果系统的输出趋于一个常数(包括零),就可以断定系统是稳定的。
三、实验题目
1、 给定一个低通滤波器的差分方程为
y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1)
输入信号
x1(n)=R8(n), x2(n)=u(n)
a.
分别求出x1(n)=R8(n)和x2(n)=u(n)的系统响应,并画出波形。
b.
求出系统的单位脉冲响应,画出其波形。
2、 给定系统的单位脉冲响应为
h1(n)=R10(n),
h2(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)
用线性卷积法求x1(n)=R8(n)分别对系统h1(n) 和h2(n)的输出响应,并画出波形。
3、 给定一谐振器的差分方程为
y(n)=1.8237y(n-1)-0.9801y(n-2)+b0x(n)-b0x(x-2)
令b0=1/100.49,谐振器的谐振频率为0.4rad.
a.
用实验方法检查系统是否稳定。输入信号为u(n)时,画出系统输出波形。
b.
给定输入信号为:x(n)=sin(0.014n)+sin(0.4n),求出系统的输出响应,并画出其波形。
四、实验代码及实验结果
1、