系统响应及系统稳定性

实验一:系统响应及系统稳定性

一、实验目的

1、 掌握求系统响应的方法;

2、 掌握时域离散系统的时域特性;

3、 分析、观察及检验系统的稳定性。

二、实验原理及方法

1、 递推法求解差分方程的解;

2、 yn=filter(B,A,xn)函数,用于求解差分方程,B表示y(n)系数,A表示x(n)系数,xn表示输入函数,本函数用于求零状态响应;

3、 yn=conv(x1n,x2n)函数,用于求x1n和x2n的卷积和;

4、 MATLAB中检测系统稳定性的可行方法是:在系统的输入端加入单位阶跃序列,如果系统的输出趋于一个常数(包括零),就可以断定系统是稳定的。

三、实验题目

1、 给定一个低通滤波器的差分方程为

  y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1)

输入信号

 x1(n)=R8(n),  x2(n)=u(n)

a.
分别求出x1(n)=R8(n)和x2(n)=u(n)的系统响应,并画出波形。

b.
求出系统的单位脉冲响应,画出其波形。

2、 给定系统的单位脉冲响应为

h1(n)=R10(n),
h2(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)

用线性卷积法求x1(n)=R8(n)分别对系统h1(n) 和h2(n)的输出响应,并画出波形。

3、 给定一谐振器的差分方程为

y(n)=1.8237y(n-1)-0.9801y(n-2)+b0x(n)-b0x(x-2)

令b0=1/100.49,谐振器的谐振频率为0.4rad.

a.
用实验方法检查系统是否稳定。输入信号为u(n)时,画出系统输出波形。

b.
给定输入信号为:x(n)=sin(0.014n)+sin(0.4n),求出系统的输出响应,并画出其波形。

四、实验代码及实验结果

1、

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值