牛顿迭代法

牛顿迭代法
牛顿迭代法(Newton’s method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。

设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f’(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f’(x0),称x1为r的一次近似值。

过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标 x2 = x1-f(x1)/f’(x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f’(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。

根据牛顿迭代的原理,可以得到以下的计算sqrt(n)的迭代公式:X(n+1)=[X(n)+p/Xn]/2。

   //返回int型
    int mySqrt(int x) {
        if(x <= 1)
        {
            return x;
        }
        long long int r = x;
        while(r > (x/r))
        {
            r = (r+x/r)/2;
        }
        return r;
    }
    
  //返回double型
  double sqr(double n) { 
    double k=1.0; 
    while(abs(k*k-n)>1e-9) { 
        k=(k+n/k)/2; 
    } 
    return k; 
}

利用牛顿迭代法计算开平方根
这种算法的原理很简单,我们仅仅是不断用(x,f(x))的切线来逼近方程x2-a=0的根。根号a实际上就是x2-a=0的一个正实根,这个函数的导数是2x。也就是说,函数上任一点(x,f(x))处的切线斜率是2x。那么,x-f(x)/(2x)就是一个比x更接近的近似值。代入f(x)=x2-a得到x-(x2-a)/(2x),也就是(x+a/x)/2。

过程如下:

首先随便猜一个近似值x,然后不断令x等于x和a/x的平均数,迭代个六七次后x的值就已经相当精确了。
例如,我想求根号2等于多少。假如我猜测的结果为4,虽然错的离谱,但你可以看到使用牛顿迭代法后这个值很快就趋近于根号2了:

( 4 + 2/ 4 ) / 2 = 2.25
( 2.25 + 2/ 2.25 ) / 2 = 1.56944…
( 1.56944…+ 2/1.56944…) / 2 = 1.42189…
( 1.42189…+ 2/1.42189…) / 2 = 1.41423…

#include <iostream>
#include <cmath>
using namespace std;
int main()
{
    double n,y=1.0;
    cin>>n;
    // 反复代入 x(k+1) = 0.5[x(k)+n/x(k)]
    while(fabs((1.0/2.0*(y+n/y))-y)>=0.00001)
    {
        y=1.0/2.0*(y+n/y);
        //cout<<y<<endl;
    }
    cout<<y;
    return 0;
}
  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值