面试题 17.19. 消失的两个数字
- 这道理难点在于O(n)时间复杂度,O1的空间复杂度,我们可以在nums数组的对应位置的元素上加上30000,当更新元素时该位置的nums元素值大于了30000,那么说明前面有个元素的值为现在的元素位置的下标,我们只要 $$ nums[nums[i]-30000]+=30000 $$ 即可。比如:一开始$$ nums[4]=6,nums[6]=8,nums[8]=10 $$ 这时候i=4的时候,我们更新$$ nums[6]=8+30000=30008 $$ 遍历到i=6时,此时$$ nums[30008-30000]=nums[8]=10+30000=30010... $$以此类推,最后遍历发现小于30000的下标就是的。前后变化的情况和对应坐标如下:
class Solution {
public:
vector<int> missingTwo(vector<int>& nums) {
int n=nums.size()+2;
nums.push_back(0);
nums.push_back(0);
nums.push_back(0);
for(int i=0;i<nums.size();i++)
{
if(nums[i]>=30000)
nums[nums[i]-30000]+=30000;
else
nums[nums[i]]+=30000;
}
int a[3]={0};
int ops=0;
for(int i=1;i<=n;i++)
if(nums[i]<30000)
a[ops++]=i;
return {a[0],a[1]};
}
};