[集训笔记5th]树状数组与线段树的入门

树状数组

树状数组( B i n a r y I n d e x e d T r e e s Binary Indexed Trees BinaryIndexedTrees)是一种由于维护序列前缀和的数据结构。对于给定序列 a a a,我们建立一个数组 c c c,其中 c [ x ] c[x] c[x]保存序列 a a a的区间 [ x − l o w b i t ( x ) + 1 , x ] [x - lowbit(x)+1, x] [xlowbit(x)+1,x]中所有数的和,即 ∑ i = x − l o w b i t ( x ) + 1 x a [ i ] \sum^{x}_{i = x-lowbit(x)+1}{a[i]} i=xlowbit(x)+1xa[i]
事实上, 数组 c c c可以看做成一个树形结构,该结构满足以下性质:

  1. 每个内部节点 c [ x ] c[x] c[x]保存以它为根的子树中所有叶节点的和。
  2. 每个内部节点 c [ x ] c[x] c[x]的子节点个数等于 l o w b i t ( x ) lowbit(x) lowbitx的个数( l o w b i t ( x ) = x & ( − x ) lowbit(x) = x \& (-x) lowbit(x)=x&(x))。
  3. 除了树根外,每个内部节点 c [ x ] c[x] c[x]的父节点是 c [ x + l o w b i t ( x ) ] c[x+lowbit(x)] c[x+lowbit(x)]
  4. 树的深度为 O ( l o g N ) O(logN) O(logN)
树状数组查询前缀和
int ask(int x){
	int ans = 0;
	for(; x; x -= x&-x) ans += c[x];
	return ans;
}
树状数组单点增加同时维护前缀和
void add(int x, int y){
	for(; x <= N; x += x & -x) c[x] += y;
}

在执行所有操作之前, 我们需要对树状数组进行初始化——针对原始序列 a a a构造一个树状数组。
方法是:从小到大一次考虑每个节点 x x x,借助 l o w b i t lowbit lowbit运算扫描它的子节点并求和。时间复杂度为 O ( N ) O(N) O(N)

线段树

线段树( S e g m e n t Segment Segment T r e e Tree Tree)是一种基于分治思想的二叉树, 用于在区间上进行信息统计, 可存储复杂信息, 比树状数组更通用, 但是代码量较大。
1.线段树的每个节点都代表着一个空间。
2.线段树具有唯一的根节点, 代表的区间是整个统计范围, 如[1, N]。
3.线段树的每个叶子节点都代表一个长度为1的区间[1, x]。
4.对于每个内部节点[l, r],它的左子节点是[l, mid], 右子节点是[mid+1,r],其中mid = (l + r) / 2(向下取整)。

线段树的向上更新

以求区间最大值为例:

void pushup(int p){
	c[p].val = max(c[p<<1].val, c[p<<1|1].val);
}

以求区间和为例:

void pushup(int p){
	c[p].val = c[p<<1].val + c[p<<1].val;
}

在精准更新某个特定区间后, 所有以这个区间为子区间的区间都要依次更新。

线段树的单元
struct Node{
	int l, r;//保存该区间的左右边界
	int val;//保存该区间的个体信息
}
线段树的建立

相当于对数组维护的初始化

void build(int p, int l, int r){
	tree[p].l = l, tree[p].r = r;
	if(l == r)//更新到叶子节点
	{
		tree[p].val = a[l];
		return ;
	}
	int mid = (l + r) >> 1;
	build(p<<1, l, mid);
	build(p<<1|1, mid + 1, r);//对对应某区间的节点的两个子节点更新
	pushup(p);
}
线段树的区间查询

较灵活,可以根据题意进行灵活地改动
这里以求某段区间中的最大值为例(于是用这个模板也可以求出最小值和极差)

int ask(int p, int l, int r){
	if(l <= tree[p].l && r >= tree[p].r) return t[p].val;
	int mid = (t[p].l + t[p].r) >> 1;
	int va =-(1 << 30);
	if(l<=mid) va = max(va, ask(p<<1, l, r));
	if(r> mid) va = max(va, ask(p<<1|1, l, r));
	return va;
}
线段树的单点修改
void change(int p, int x, int v){
	if(t[p].l == t[p].r) {t[p]. val = v; return;}
	int mid = (t[p].l + t[p].r) / 2;
	if(x <= mid) change(p<<1, x, v);
	else change(p<<1|1, x, v);
	t[p].val = max(t[p<<1].val, t[p<<1|1].val);
}
线段树的区间修改

为了节省时间, 通常在结构体里多维护一个变量lazy标记,这样可以减少更新子节点的次数。注意有的题目要求要对每个叶子节点更新,就不可以用lazy标记。有的题目里可能本身的信息就可以充当lazy标记起到作用,就可以不用多维护变量。


void pushdown(int p){//向下更新lazy标记
	if(t[p].lazy){
		t[p<<1].val += t[p].lazy * (t[p<<1].r - t[p<<1].l + 1);
		t[p<<1|1].val += t[p<<1|1].lazy * (t[p<<1|1].r - t[p].l + 1);
	}
	t[p<<1].lazy += t[p].lazy;
	t[p<<1|1].lazy += t[p].lazy;
	t[p<<1].lazy = 0;
}

void change(int p, int l, int r, int d){
	if(l <= t[p].l && r >= t[p].r){
		t[p].val += d * (t[p].r - t[p].r + 1);
		t[p].lazy += d;
		return ;
	}
	pushdown(p);
	int mid = (t[p].l + t[p].r) >> 1;
	if (l <= mid) change(p<<1, l, r, d);
	if (r > mid) change(p<<1|1, l, r, d);
	pushup(p);
}

int ask(int p, int l, int r){
	if (l <= t[p].l && r >= t[p].r) return t[p].val;
	pushdown(p);
	int mid = (t[p].l + t[p].r) >> 1;
	int val = 0;
	if (l <= mid) val += ask(p<<1, l, r);
	if (r > mid) val += ask(p<<1|1, l, r);
	return val;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值