乘法逆元的求解

乘法逆元计算方法1:根据费马小定理

条件:mod必须为质数

公式a的乘法逆元x=a^(p-2)%p。

其中时间复杂度为O(logn)

typedef long long ll;
ll quick_pow(ll a, ll b, ll yu)
{
	ll ans = 1;
	a = a % yu;
	while (b)
	{
		if (b & 1)
			ans = ans * a%yu;
		a = a * a%yu;
		b >>= 1;
	}
	return ans;
}    
ll inv(ll num)
{
    return quick_pow(a,mod - 2,mod)
}

乘法逆元计算方法2:利用拓展欧几里得算法

a*x = 1 (mod p) 

根据拓展欧几里得算法,可以求出:a*x+y=1(mod p)的x与y,所得的x就是乘法逆元

模板为:

#define ll long long
void ex_gcd(ll a, ll b,ll &x,ll &y,ll &d)
{
    if (b==0)
    {
        d=a,x=1,y=0;
    }
    else
    {
        ex_gcd(b,a%b,y,x,d);
        y-=x*(a/b);
    }
}
ll inv(ll t,ll p)
{
    ll d, x, y;
    ex_gcd(t,p,x,y,d);
    return d ==1?(x%p+p)%p:-1;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值