看到这道题,首先从时间复杂度上来分析
数据规模10*4幂 根据规律应该用O(nlog n)或块状链接来做这题
algorithm库函数中 sort()函数时间复杂度为O(nlog n) 刚好适用
用法 sort(array,array+size) 排序之后是升序
求中位数位置:(N+1/2)-1
#include <iostream>
#include <algorithm>
using namespace std;
int a[10005];
int main()
{
int N;
cin>>N;
for(int i=0;i<N;i++)
{
cin>>a[i];
}
sort(a,a+N);
int ans=(1+N)/2-1;
cout<<a[ans]<<endl;
return 0;
}
附:
根据数据规模判断应该用什么时间复杂度的算法:
(数据范围反推算法复杂度: logn 指以2为底
1.n<=30 指数级别(暴搜:网格算法和穷举),dfs+剪枝,状态压缩dp
2.n<=100=> O(n3),floyd,dp;
3.n<=1000=>O(n2),O(n2logn),dp,二分
4.n<=10000=>O(n根号n),块状链表
5.n<=100000=>O(nlogn)=>各种sort,线段树,树状数组,set/map,heap,dijkstra+heap,spfa,求平面交,二分
6.n<=1000000=>O(n),以及常数较小的O(nlogn)算法=>hash,双指针扫描,kmp,AC自动机,
常数比较小的O(nlogn)做法:sort,树状数组,heap,dijkstra,spfa
7.n<=10000000=>O(n),双指针扫描,kmp,AC自动机,线性筛素数。
8.n<109=>O(根号n),判断质数
9.n<1018=>O(logn),最大公约数。
)