BZOJ-1264 基因匹配Match (LCS->LIS 或者线段树优化LCS)

本文介绍了一种将最长公共子序列(LCS)问题转化为最长递增子序列(LIS)问题的方法,并使用线段树进行优化,通过实例解析了两种优化后的算法实现。

题目:

              传送门

思路:

        第一种方法是将LCS转化为LIS,我们把第一个序列的每个数的位置记录下来,按照第二个序列出现的顺序,每次逆序排列所有位置来构造新数组,然后对这个新数组求LIS即可.
        例如:
        1: ABCAC
        2: CCABA
        New: 54 54 41 2 41

AC_Code

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <vector>

using namespace std;

const int maxn = 2e4+7;
const int MAXN = 1e5+7;
const int inf = 1e9+7;

int n;
int a;
int p=0;
int c[MAXN*5];
vector<int> v[maxn];
int dp[MAXN*5];


int main() {
    scanf("%d",&n);
    for(int i=0;i<=25*n;i++) dp[i] = inf;
    for(int i=1;i<=5*n;i++) {
        scanf("%d",&a);
        v[a].push_back(i);
    }
    for(int i=0;i<5*n;i++) {
        scanf("%d",&a);
        for(int j=4;j>=0;j--) {
            c[p++] = v[a][j];
        }
    }
    int len =0;
    for(int i=0;i<5*n*5;i++) {
        int d = lower_bound(dp,dp+len,c[i])-dp;
        if(d==len) {
            len++;
        };
        dp[d] = c[i];
    }
    printf("%d\n", len);
    return 0;
}

        第二种方法是通过线段树优化dp过程:
        经典dp求LCS是通过的 O(n2) 的复杂度实现的.众所周知其动态转移方程为:
    dp[i][j] = max ( dp[i-1][j] , dp[i][j-1]) (a[i]!=b[j])
                   max(max(dp[i-1][j] , dp[i][j-1]),dp[i-1][j-1]+1) (a[i]=b[j])
        很明显对于第一种情况的状态都由左边或者上边转移过来,而左边转移相当于就是每次更新 [j,n] 最大值,即每次都从该位置更新到末尾.
        第二种情况我们先查询一下 dp[i-1][j-1]的值,然后和第一种情况就一样啦

#include <iostream>
#include <algorithm>
#include <cstdio>

using namespace std;

const int maxn = 2e4+7;
const int MAXN = 1e5+7;

int n;
int tr[MAXN<<2];
int lazy[MAXN<<2];
int a[MAXN];
int b[MAXN];
int p[maxn];
int pos[maxn][5];


void pushdown(int num) {
    if(lazy[num] == 0) return ;
    lazy[num<<1] = max(lazy[num<<1],lazy[num]);
    lazy[num<<1|1] = max(lazy[num<<1|1],lazy[num]);

    if(tr[num<<1] <= lazy[num]) tr[num<<1] = lazy[num];
    if(tr[num<<1|1] <= lazy[num]) tr[num<<1|1] = lazy[num];

    lazy[num] = 0;
    return ;
}

void pushup(int num) {tr[num] = max(tr[num<<1],tr[num<<1|1]);}

void build(int l,int r,int num) {
    if(l==r) {
        tr[num] = 0;    
        return ;
    }
    int mid = (l+r) >>1;
    build(l,mid,num<<1);
    build(mid+1,r,num<<1|1);
    pushup(num);
}

void modify(int l,int r,int num,int le,int ri,int k) {
    if(ri<l || r<le) return ;
    if(le<=l && r<=ri) {
        lazy[num] = max(lazy[num],k);
        tr[num] = max(tr[num],k);
        return ;
    }
    int mid = (l+r)>>1;
    pushdown(num);
    if(le<=mid) modify(l,mid,num<<1,le,ri,k);
    if(mid< ri) modify(mid+1,r,num<<1|1,le,ri,k);
    pushup(num);
}

int quriy(int l,int r,int num,int pos) {
    if(l==r) return tr[num];
    int mid = (l+r) >>1;
    pushdown(num);
    if(pos<=mid) return quriy(l,mid,num<<1,pos);
    if(mid< pos) return quriy(mid+1,r,num<<1|1,pos);
}

int main() {
    scanf("%d",&n);
    for(int i=1;i<=5*n;i++) {
        scanf("%d",&a[i]);
        pos[a[i]][p[a[i]]++] = i;
    }
    for(int i=1;i<=5*n;i++) {
        scanf("%d",&b[i]);
    }
    build(1,5*n,1);
    for(int i=1;i<=5*n;i++) {
        //printf("\n");
        int v[5];
        for(int j = 0 ; j<5;j++) {
            int x = pos[b[i]][j];
            if(i==1) {
                modify(1,5*n,1,x,5*n,1);
            }
            else {
                if(x != 1)  v[j] = quriy(1,5*n,1,x-1);
                else v[j] = 0;
            }
        }
        if(i!=1) {
            for(int j=0;j<5;j++) {
                int x = pos[b[i]][j];
                modify(1,5*n,1,x,5*n,v[j]+1);
            }
        }
    }
    printf("%d\n",tr[1]);
    return 0;
}
<think> 我们被要求提供LCS(最长公共子序列)和LIS(最长递增子序列)的状态转移方程,并参考之前的引用内容(引用[1]和引用[2])。 根据引用[1]和引用[2]的内容: 1. LCS(最长公共子序列): 状态定义:$dp[i][j]$ 表示字符串s1的前i个字符和字符串s2的前j个字符的最长公共子序列长度。 状态转移方程: $$ dp[i][j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0 \\ dp[i-1][j-1] + 1 & \text{if } s1[i-1] = s2[j-1] \\ \max(dp[i-1][j], dp[i][j-1]) & \text{if } s1[i-1] \neq s2[j-1] \end{cases} $$ 注意:这里假设字符串下标从0开始,所以当比较字符时,实际比较的是s1[i-1]和s2[j-1](因为dp[i][j]考虑的是前i个和前j个字符)。 2. LIS(最长递增子序列): 有两种常见的解决方法:O(n^2)DP方法和O(nlogn)的贪心+二分查找方法。 a) O(n^2)方法: 状态定义:$dp[i]$ 表示以第i个元素结尾的最长递增子序列的长度。 状态转移方程: $$ dp[i] = \max_{\substack{0 \leq j < i \\ a[j] < a[i]}} \{ dp[j] \} + 1 $$ 也就是说,对于每个i,遍历所有j(j从0到i-1),如果a[j] < a[i],那么dp[i] = max(dp[i], dp[j]+1)。 初始状态:每个dp[i]至少为1(因为自身可以作为一个子序列)。 b) O(nlogn)方法(引用[2]中提供了两种,分别是上升序列和下降序列的维护): 这里我们关注上升序列(LIS)的O(nlogn)解法: 使用一个数组dp(或通常用tail表示),dp[k]表示长度为k+1的递增子序列的最后一个元素的最小可能值(注意这里k从1开始,但代码中索引从1开始)。 然后遍历数组,对于每个元素a[i]: - 如果a[i]大于dp的最后一个元素(即dp[ans]),则直接将其添加到dp末尾,长度增加1。 - 否则,在dp数组中二分查找第一个大于等于a[i]的位置(用lower_bound),将其替换为a[i]。 最终,dp数组的长度就是最长递增子序列的长度。 注意:这个dp数组并不一定是要求的LIS,但其长度就是LIS的长度。 状态转移没有显式的方程,而是通过维护一个有序数组来实现。 注意:引用[2]中提供了O(n^2)的代码和O(nlogn)的代码,以及上升和下降序列的代码片段。 因此,我们将分别给出LCS和LIS的状态转移方程(主要给出O(n^2)的LIS,因为它是标准的DP方程,而O(nlogn)的则是一种优化方法,通常不写状态转移方程)。 根据以上内容,我们回答用户的问题。 </think> ### LCS(最长公共子序列)的状态转移方程 给定两个序列 $s1$ 和 $s2$,长度分别为 $m$ 和 $n$: - **状态定义**:$dp[i][j]$ 表示 $s1$ 前 $i$ 个字符和 $s2$ 前 $j$ 个字符的最长公共子序列长度 - **状态转移方程**: $$ dp[i][j] = \begin{cases} 0 & i=0 \text{ 或 } j=0 \\ dp[i-1][j-1] + 1 & s1[i] = s2[j] \\ \max(dp[i-1][j], \ dp[i][j-1]) & s1[i] \neq s2[j] \end{cases} $$ - **特点**: - 二维动态规划,时间复杂度 $O(mn)$ - 当字符匹配时继承左上角值 $+1$;不匹配时取左侧和上方的最大值[^1] --- ### LIS(最长递增子序列)的状态转移方程 给定序列 $a$,长度为 $n$: #### 1. $O(n^2)$ 解法 - **状态定义**:$dp[i]$ 表示以 $a[i]$ 结尾的 LIS 长度 - **状态转移方程**: $$ dp[i] = \max_{0 \leq j < i} \begin{cases} 1 & \text{(初始值)} \\ dp[j] + 1 & \text{if } a[j] < a[i] \end{cases} $$ - **核心代码**: ```cpp for (int i = 0; i < n; i++) { dp[i] = 1; // 初始化为自身长度 for (int j = 0; j < i; j++) { if (a[j] < a[i]) dp[i] = max(dp[i], dp[j] + 1); } } ``` #### 2. $O(n \log n)$ 解法(贪心+二分) - **状态维护**:$dp[k]$ 表示长度为 $k$ 的上升子序列的最小末尾值 - **核心操作**: - 遍历元素 $a[i]$: 1. 若 $a[i] > dp[\text{ans}]$,则 $dp[++\text{ans}] = a[i]$ 2. 否则用 $a[i]$ **替换** $dp$ 中第一个 $\geq a[i]$ 的元素 - 最终 $\text{ans}$ 即为 LIS 长度 - **二分优化**: ```cpp vector<int> dp = {a[0]}; for (int i = 1; i < n; i++) { if (a[i] > dp.back()) dp.push_back(a[i]); else *lower_bound(dp.begin(), dp.end(), a[i]) = a[i]; // 二分插入 } ``` 时间复杂度由嵌套循环优化为 $O(n \log n)$[^2] --- ### 核心对比 | 问题 | 状态定义 | 转移方程特点 | 时间复杂度 | |------|------------------------|----------------------------------|-------------| | LCS | 二维:$dp[i][j]$ | 字符匹配时左上继承,否则取左右值 | $O(mn)$ | | LIS | 一维:$dp[i]$ | 比较历史元素更新当前位置 | $O(n^2)$ | | LIS★ | 贪心数组:$dp[k]$ | 二分维护单调递增序列 | $O(n \log n)$ | > 注:LIS 的 $O(n \log n)$ 算法虽高效,但 $dp$ 数组存储的**不是实际子序列**,仅能获取长度信息[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值