计算机数值分析:
数值积分:
为什么要数值积分?
微积分公式:
啊F(x)表达式比较复杂时,计算困难,求不出来的时候。或者f(x)位置,只是实验数据得来的表
数值积分的基本思想:
一定有一点使得ab面积=ab*(&)
但是这个点往往是未知的,所以用另一种方式来代替,找一个点来代替。
有下列几种方式来:
数值积分一般公式:
- 用 f(x) 在【a,b】上取点加权平均作为的近似值。
- 得到求积公式:
- 将定积分计算转化成被积函数的函数值的计算。
- 无需求原函数,易于计算机实现。
代数精度:
- 验证方法:将 f(x)=1,x,x2,…,xm 依次带入公式成立,将 f(x)=xm+1 带入公式不成立。
Newton-Cotes公式:
C(n)i是系数通过查表得到
复合梯形公式:
【a,b】区间n等分,每个区间用梯形代替, 求解
求解公式:
复合Simpson公式:
【a,b】区间n等分,每个区间用抛物线拟合积分
求解公式:
Remberg算法:
梯形法递推公式:
将【a,b】区间n等分后,再对折等分,步长折半。
递推公式:
梯形法的加速-Remberg算法:
求解公式: