论文
爱喝奶茶的仙女
这个作者很懒,什么都没留下…
展开
-
Modbus网络攻击的实施和检测
摘要--监视控制和数据采集(SCADA)系统在关键基础设施(CI)中起着重要作用,因为它们监视和控制工业设备的自动化过程。但是,SCADA依靠脆弱的通信协议而没有任何网络安全机制,从而有可能危及CI的整体运行。在本文中,我们关注于Modbus / TCP协议,该协议在许多CI中尤其是电网中普遍使用。特别是,我们的贡献是双重的。首先,我们研究并增强Smod pen-testing工具提供的网络攻击。其次,我们介绍了一种基于异常的入侵检测系统(IDS),该系统能够检测与Modbus / TCP相关的拒绝服务(D翻译 2020-12-30 15:06:01 · 2709 阅读 · 0 评论 -
协议模糊的堆叠式Seq2seq注意模型
通过生成大量异常数据作为程序的输入,模糊测试是发现软件漏洞的有效方法。很难自动模糊协议,因为必须手动构造一个满足协议规范的模板以生成测试用例。在本文中,我们建立了堆叠的seq2seq注意模型来自动生成协议测试用例。Seq2seq-attention是一种机器学习技术,具有编码器-解码器结构以根据上下文输出文本序列。我们评估了不同层LSTM的seq2seq注意模型的训练效果,并指出测试案例的最高正确性是通过3层LSTM实现的。此外,我们基于堆叠的seq2seq注意模型实现了模糊器,并与基于语法的模糊器进行了比翻译 2020-12-30 10:59:23 · 429 阅读 · 1 评论 -
Not all bytes are equal: Neural byte sieve for fuzzing(不是所有字节都是相等的:用于模糊的神经字节过滤)
模糊是一种常用的动态程序分析技术,用于发现复杂软件中的漏洞。模糊处理涉及用精心设计的恶意输入反签名来呈现目标程序,以导致崩溃、缓冲区溢出、内存错误和异常。以一种有效的方式制造恶意输入是一个困难的开放问题,通常生成此类输入的最佳方法是对预先存在的有效输入(种子文件)应用统一的随机突变。我们提出了一种学习技术,使用神经网络学习过去模糊探索输入文件中的模式,以指导未来的模糊探索。特别是,神经模型学习一个函数来预测输入文件中好的(和坏的)位置,以基于过去的突变和相应的代码覆盖信息来执行模糊突变。我们实现了几个神经模翻译 2020-11-18 17:18:31 · 1092 阅读 · 3 评论 -
Detecting Text in Natural Image with Connectionist Text Proposal Network
Detecting Text in Natural Image with Connectionist Text Proposal Network(用连接文本提议网络检测自然图像中的文本)摘要我们提出了一种新颖的连接文本提议网络(CTPN),它能够准确定位自然图像中的文本行。CTPN直接在卷积特征映射中的一系列细尺度文本提议中检测文本行。我们开发了一个垂直锚点机制,联合预测每个固定宽度提议的位置...翻译 2019-08-13 21:05:19 · 323 阅读 · 0 评论