《论文阅读》Linformer: Self-Attention with Linear Complexity

提出Linformer模型,通过引入低秩矩阵近似自我注意机制,实现从O(n²)到O(n)的时间复杂度降低,适用于大规模点云数据处理。

留个笔记自用

Linformer: Self-Attention with Linear Complexity

做什么

点云的概念:点云是在同一空间参考系下表达目标空间分布和目标表面特性的海量点集合,在获取物体表面每个采样点的空间坐标后,得到的是点的集合,称之为“点云”(Point Cloud)。
点包含了丰富的信息,包括三维坐标X,Y,Z、颜色、分类值、强度值、时间等等,不一一列举。在这里插入图片描述
一般的3D点云都是使用深度传感器扫描得到的,可以简单理解为相比2维点,点云是3D的采样
在这里插入图片描述

做了什么

这里设计了一款transformer变种,证明了自我注意机制也就是self-attention可以用一个低秩矩阵来近似,于是可以将时间复杂度O(n2)缩减至O(n)的线性transformer

怎么做

回忆一下常见的SA计算方法
在这里插入图片描述
这里的三个W均是学习的矩阵,QKV就是常见transformer中的查询向量、键向量、值向量,对比之前论文里出现的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值