Andrew Ng Deep Learning 第二课 第二周

前言

网易云课堂(双语字幕,不卡):https://mooc.study.163.com/smartSpec/detail/1001319001.htmcourseId=1004570029、
Coursera(贵):https://www.coursera.org/specializations/deep-learning
本人初学者,先在网易云课堂上看网课,再去Coursera上做作业,开博客以记录,文章中引用图片皆为课程中所截。
题目转载至:http://www.cnblogs.com/hezhiyao/p/7810725.html
编程作业所需库:链接:https://pan.baidu.com/s/1aS1Oia2fskemBHHEMnSepw 密码:66gd

优化算法

Mini-batch 梯度下降

在这里插入图片描述
在这里插入图片描述
Tips:简单来说就是把一个大训练集分割成多个小训练集后进行梯度下降
在这里插入图片描述

Adam优化算法

Momentum梯度下降

指数加权平均

在这里插入图片描述
Tips:对每个数据进行线性关联加工,β是超参数
在这里插入图片描述

Momentum算法

在这里插入图片描述

RMSprop

在这里插入图片描述

Adam算法

在这里插入图片描述
在这里插入图片描述
Tips:ε是为了防止分母有0的情况

学习率递减

在这里插入图片描述
在这里插入图片描述
Tips:Decay-rate是一个超参数,后面是迭代次数

编程作业

import numpy as np
import matplotlib.pyplot as plt
import scipy.io
import math
import sklearn
import sklearn.datasets
import testCase
from opt_utils import load_params_and_grads, initialize_parameters, forward_propagation, backward_propagation
from opt_utils import compute_cost, predict, predict_dec, plot_decision_boundary, load_dataset

%matplotlib inline
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

def update_parameters_with_gd(parameters,grads,learning_rate):
    """
    使用梯度下降更新参数

    参数:
        parameters - 字典,包含了要更新的参数:
            parameters['W' + str(l)] = Wl
            parameters['b' + str(l)] = bl
        grads - 字典,包含了每一个梯度值用以更新参数
            grads['dW' + str(l)] = dWl
            grads['db' + str(l)] = dbl
        learning_rate - 学习率

    返回值:
        parameters - 字典,包含了更新后的参数
    """
    L = len(parameters) // 2

    # Update rule for each parameter
    for l in range(L):
        ### START CODE HERE ### (approx. 2 lines)
        parameters["W" + str(l +1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
        parameters["b" + str(l +1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]

        ### END CODE HERE ###
        
    return parameters



def random_mini_batches(X,Y,mini_batch_size=64,seed=0):
    """
    从(X,Y)中创建一个随机的mini-batch列表

    参数:
        X - 输入数据,维度为(输入节点数量,样本的数量)
        Y - 对应的是X的标签,【1 | 0】(蓝|红),维度为(1,样本的数量)
        mini_batch_size - 每个mini-batch的样本数量

    返回:
        mini-bacthes - 一个同步列表,维度为(mini_batch_X,mini_batch_Y)

    """
    np.random.seed(seed)            # To make your "random" minibatches the same as ours
    m = X.shape[1]                  # number of training examples   m=148
    mini_batches = []
        
    # Step 1: Shuffle (X, Y)
    permutation = list(np.random.permutation(m)) 
    shuffled_X = X[:, permutation]              
    shuffled_Y = Y[:, permutation].reshape((1,m)) 

    # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
    num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning  =2
    for k in range(0, num_complete_minibatches):
        ### START CODE HERE ### (approx. 2 lines)
        mini_batch_X = shuffled_X[:,k * mini_batch_size:(k+1)*mini_batch_size]
        mini_batch_Y = shuffled_Y[:,k * mini_batch_size:(k+1)*mini_batch_size]
        ### END CODE HERE ###
        mini_batch = (mini_batch_X, mini_batch_Y)
        mini_batches.append(mini_batch)
    
    # Handling the end case (last mini-batch < mini_batch_size)
    if m % mini_batch_size != 0:
        ### START CODE HERE ### (approx. 2 lines)
        mini_batch_X = shuffled_X[:,num_complete_minibatches * mini_batch_size:]  # 64*2:148
        mini_batch_Y = shuffled_Y[:,num_complete_minibatches * mini_batch_size:]  #62*2:148
        ### END CODE HERE ###
        mini_batch = (mini_batch_X, mini_batch_Y)
        mini_batches.append(mini_batch)
    
    return mini_batches
def initialize_velocity(parameters):
    """
    初始化速度,velocity是一个字典:
        - keys: "dW1", "db1", ..., "dWL", "dbL" 
        - values:与相应的梯度/参数维度相同的值为零的矩阵。
    参数:
        parameters - 一个字典,包含了以下参数:
            parameters["W" + str(l)] = Wl
            parameters["b" + str(l)] = bl
    返回:
        v - 一个字典变量,包含了以下参数:
            v["dW" + str(l)] = dWl的速度
            v["db" + str(l)] = dbl的速度

    """
    L = len(parameters) // 2
    v = {}
    # Initialize velocity
    for l in range(L):
        ### START CODE HERE ### (approx. 2 lines)
        v["dW" + str(l+1)] = np.zeros(( parameters['W' + str(l+1)].shape))
        v["db" + str(l+1)] =  np.zeros(( parameters['b' + str(l+1)].shape))
        ### END CODE HERE ###
        
    return v
def update_parameters_with_momentun(parameters,grads,v,beta,learning_rate):
    """
    使用动量更新参数
    参数:
        parameters - 一个字典类型的变量,包含了以下字段:
            parameters["W" + str(l)] = Wl
            parameters["b" + str(l)] = bl
        grads - 一个包含梯度值的字典变量,具有以下字段:
            grads["dW" + str(l)] = dWl
            grads["db" + str(l)] = dbl
        v - 包含当前速度的字典变量,具有以下字段:
            v["dW" + str(l)] = ...
            v["db" + str(l)] = ...
        beta - 超参数,动量,实数
        learning_rate - 学习率,实数
    返回:
        parameters - 更新后的参数字典
        v - 包含了更新后的速度变量
    """
    L = len(parameters) // 2 # number of layers in the neural networks
    
    # Momentum update for each parameter
    for l in range(L):
        
        ### START CODE HERE ### (approx. 4 lines)
        # compute velocities
        v["dW" + str(l+1)] = beta*v["dW"+str(l+1)]+(1-beta)*grads["dW"+str(l+1)]
        v["db" + str(l+1)] = beta*v["db"+str(l+1)]+(1-beta)*grads["db"+str(l+1)]
        # update parameters
        parameters["W" + str(l+1)] -= learning_rate*v["dW" + str(l+1)]
        parameters["b" + str(l+1)] -= learning_rate*v["db" + str(l+1)]
        ### END CODE HERE ###
        
    return parameters, v
def initialize_adam(parameters):
    """
    初始化v和s,它们都是字典类型的变量,都包含了以下字段:
        - keys: "dW1", "db1", ..., "dWL", "dbL" 
        - values:与对应的梯度/参数相同维度的值为零的numpy矩阵

    参数:
        parameters - 包含了以下参数的字典变量:
            parameters["W" + str(l)] = Wl
            parameters["b" + str(l)] = bl
    返回:
        v - 包含梯度的指数加权平均值,字段如下:
            v["dW" + str(l)] = ...
            v["db" + str(l)] = ...
        s - 包含平方梯度的指数加权平均值,字段如下:
            s["dW" + str(l)] = ...
            s["db" + str(l)] = ...

    """
    L = len(parameters) // 2 # number of layers in the neural networks
    v = {}
    s = {}
    
    # Initialize v, s. Input: "parameters". Outputs: "v, s".
    for l in range(L):
    ### START CODE HERE ### (approx. 4 lines)
        v["dW" + str(l+1)] = np.zeros(( parameters["W" + str(l+1)].shape))
        v["db" + str(l+1)] = np.zeros(( parameters["b" + str(l+1)].shape))
        s["dW" + str(l+1)] = np.zeros(( parameters["W" + str(l+1)].shape))
        s["db" + str(l+1)] = np.zeros(( parameters["b" + str(l+1)].shape))
    ### END CODE HERE ###
    
    return v, s

def update_parameters_with_adam(parameters,grads,v,s,t,learning_rate=0.01,beta1=0.9,beta2=0.999,epsilon=1e-8):
    """
    使用Adam更新参数

    参数:
        parameters - 包含了以下字段的字典:
            parameters['W' + str(l)] = Wl
            parameters['b' + str(l)] = bl
        grads - 包含了梯度值的字典,有以下key值:
            grads['dW' + str(l)] = dWl
            grads['db' + str(l)] = dbl
        v - Adam的变量,第一个梯度的移动平均值,是一个字典类型的变量
        s - Adam的变量,平方梯度的移动平均值,是一个字典类型的变量
        t - 当前迭代的次数
        learning_rate - 学习率
        beta1 - 动量,超参数,用于第一阶段,使得曲线的Y值不从0开始(参见天气数据的那个图)
        beta2 - RMSprop的一个参数,超参数
        epsilon - 防止除零操作(分母为0)

    返回:
        parameters - 更新后的参数
        v - 第一个梯度的移动平均值,是一个字典类型的变量
        s - 平方梯度的移动平均值,是一个字典类型的变量
    """
    L = len(parameters) // 2                 # number of layers in the neural networks
    v_corrected = {}                         # Initializing first moment estimate, python dictionary
    s_corrected = {}                         # Initializing second moment estimate, python dictionary
    
    # Perform Adam update on all parameters
    for l in range(L):
        # Moving average of the gradients. Inputs: "v, grads, beta1". Output: "v".
        ### START CODE HERE ### (approx. 2 lines)
        v["dW"+str(l+1)]=beta1*v["dW"+str(l+1)]+(1-beta1)*grads["dW"+str(l+1)]
        v["db"+str(l+1)]=beta1*v["db"+str(l+1)]+(1-beta1)*grads["db"+str(l+1)]
        ### END CODE HERE ###

        # Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected".
        ### START CODE HERE ### (approx. 2 lines)
        v_corrected["dW"+str(l+1)]=v["dW"+str(l+1)]/(1-math.pow(beta1,t))
        v_corrected["db"+str(l+1)]=v["db"+str(l+1)]/(1-math.pow(beta1,t))
        ### END CODE HERE ###

        # Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s".
        ### START CODE HERE ### (approx. 2 lines)
        s["dW"+str(l+1)]=beta2*s["dW"+str(l+1)]+(1-beta2)*(grads["dW"+str(l+1)]**2)
        s["db"+str(l+1)]=beta2*s["db"+str(l+1)]+(1-beta2)*(grads["db"+str(l+1)]**2)
        ### END CODE HERE ###

        # Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected".
        ### START CODE HERE ### (approx. 2 lines)
        s_corrected["dW"+str(l+1)]=s["dW"+str(l+1)]/(1-math.pow(beta2,t))
        s_corrected["db"+str(l+1)]=s["db"+str(l+1)]/(1-math.pow(beta2,t))
        ### END CODE HERE ###

        # Update parameters. Inputs: "parameters, learning_rate, v_corrected, s_corrected, epsilon". Output: "parameters".
        ### START CODE HERE ### (approx. 2 lines)
        parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * (v_corrected["dW" + str(l + 1)] / np.sqrt(s_corrected["dW" + str(l + 1)] + epsilon))
        parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * (v_corrected["db" + str(l + 1)] / np.sqrt(s_corrected["db" + str(l + 1)] + epsilon))

        ### END CODE HERE ###

    return parameters, v, s

def model(X,Y,layers_dims,optimizer,learning_rate=0.0007,
          mini_batch_size=64,beta=0.9,beta1=0.9,beta2=0.999,
          epsilon=1e-8,num_epochs=10000,print_cost=True,is_plot=True):
    """
    可以运行在不同优化器模式下的3层神经网络模型。

    参数:
        X - 输入数据,维度为(2,输入的数据集里面样本数量)
        Y - 与X对应的标签
        layers_dims - 包含层数和节点数量的列表
        optimizer - 字符串类型的参数,用于选择优化类型,【 "gd" | "momentum" | "adam" 】
        learning_rate - 学习率
        mini_batch_size - 每个小批量数据集的大小
        beta - 用于动量优化的一个超参数
        beta1 - 用于计算梯度后的指数衰减的估计的超参数
        beta1 - 用于计算平方梯度后的指数衰减的估计的超参数
        epsilon - 用于在Adam中避免除零操作的超参数,一般不更改
        num_epochs - 整个训练集的遍历次数,(视频2.9学习率衰减,1分55秒处,视频中称作“代”),相当于之前的num_iteration
        print_cost - 是否打印误差值,每遍历1000次数据集打印一次,但是每100次记录一个误差值,又称每1000代打印一次
        is_plot - 是否绘制出曲线图

    返回:
        parameters - 包含了学习后的参数

    """

    L = len(layers_dims)             # number of layers in the neural networks
    costs = []                       # to keep track of the cost
    t = 0                            # initializing the counter required for Adam update
    seed = 10                        # For grading purposes, so that your "random" minibatches are the same as ours
    
    # Initialize parameters
    parameters = initialize_parameters(layers_dims)

    # Initialize the optimizer
    if optimizer == "gd":
        pass # no initialization required for gradient descent
    elif optimizer == "momentum":
        v = initialize_velocity(parameters)
    elif optimizer == "adam":
        v, s = initialize_adam(parameters)
    
    # Optimization loop
    for i in range(num_epochs):
        
        # Define the random minibatches. We increment(增加) the seed to reshuffle(重新洗牌) differently the dataset after each epoch
        seed = seed + 1
        minibatches = random_mini_batches(X, Y, mini_batch_size, seed)

        for minibatch in minibatches:

            # Select a minibatch
            (minibatch_X, minibatch_Y) = minibatch

            # Forward propagation
            a3, caches = forward_propagation(minibatch_X, parameters)

            # Compute cost
            cost = compute_cost(a3, minibatch_Y)

            # Backward propagation
            grads = backward_propagation(minibatch_X, minibatch_Y, caches)

            # Update parameters
            if optimizer == "gd":
                parameters = update_parameters_with_gd(parameters, grads, learning_rate)
            elif optimizer == "momentum":
                parameters, v = update_parameters_with_momentum(parameters, grads, v, beta, learning_rate)
            elif optimizer == "adam":
                t = t + 1 # Adam counter
                parameters, v, s = update_parameters_with_adam(parameters, grads, v, s,
                                                               t, learning_rate, beta1, beta2,  epsilon)
        
        # Print the cost every 1000 epoch
        if print_cost and i % 1000 == 0:
            print ("Cost after epoch %i: %f" %(i, cost))
        if print_cost and i % 100 == 0:
            costs.append(cost)
                
    # plot the cost
    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('epochs (per 100)')
    plt.title("Learning rate = " + str(learning_rate))
    plt.show()

    return parameters
train_X, train_Y = load_dataset(is_plot=False)
layers_dims = [train_X.shape[0], 5, 2, 1]
#使用Adam优化的梯度下降
parameters = model(train_X, train_Y, layers_dims, optimizer="adam",is_plot=True)

题目

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值