- 博客(11)
- 收藏
- 关注
原创 【目标检测】绘图——将目标框绘制在图像(PIL)
【目标检测】绘图——将目标框绘制在图像(PIL)前言准备绘制代码PIL效果图前言近期在做目标检测的项目,除了算法流程本身,我发现可视化也能极大的加深对整个pipeline的理解,因此想借这篇博客记录一下在目标检测项目中的绘图注意点。准备图像集标注txt文件,格式:img_path box1(x1,y1,x2,y2,cls_id) box2(x1,y1,x2,y2,cls_id)...class的txt文件,每一行为class_name绘制代码PILdef get_classes(
2022-04-13 18:45:09 6121 1
原创 基于Faster-rcnn的安全帽检测(使用Colab进行训练)
基于Faster-rcnn的安全帽检测(使用Colab进行训练),由于电脑配置不够,又想对目标检测能够有一些实战经历,因此费了不少时间和精力终于在Colab成功跑通了这份代码。
2022-03-22 23:16:58 1576 8
原创 Colab使用小结(持续更新)
用colab跑一些小应用还是挺香的,因此借此博客记录一下使用过程中的经验。上传文件慢如果直接在网页版谷歌云盘上传文件夹的话会很慢,而且经常会中断。有人说上传zip文件会快很多,但是最后还是要在云盘进行解压还是挺费时间的。我的方法是:下载谷歌云盘客户端,然后会生成下图的一个单独的盘,把要上传的文件移到这里。然后点开桌面底部谷歌云盘小标,等待一会直到本地云盘的内容同步更新即可。no file or directory在云盘但凡涉及到路径的,一定要使用绝对路径,不能用相对路径。我的方法是:获得项
2022-03-10 22:32:18 1239 2
原创 关键点检测一:HRNet数据预处理(MPII)
关键点检测一:HRNet数据预处理(MPII)前言HRNet源码数据预处理目录位置源码分析JointsDataset类`__init__``_get_db``half_body_transform``__getitem__``get_affine_transform``generate_target`前言最近在做考场行为分析的一个项目,其中我负责的是使用关键点检测算法来进行考生异常行为检测。之前只接触过分类算法,写与看的代码也只限于分类任务。而检测任务工程量太大,因此在看官方源码时非常的吃力,因此希望写
2021-12-20 15:15:05 5739 25
原创 Sipakmed:a new dataset feature and image based classification of cervical cells——记一次复现论文经历(一)
最先使用的是Image features是因为我个人比较熟悉,所以先做的那个,后来把cell featurs 和deep features的也做了,涉及到了svmcell features首先看一下数据文件。五类细胞分为细胞质和细胞核特征。每个dat文件有28列,其中,第一列是这个特征所属的细胞块图像编号,第二列是该细胞块图像的细胞编号(一张细胞块图像里有多个细胞),这两列不属于特征,所以在训练的时候要把这两列去掉。...
2020-08-02 15:52:27 689 4
原创 Sipakmed:a new dataset feature and image based classification of cervical cells——记一次复现论文经历(四)
Image features 训练代码目前还只做了这个 Image features的实验import torchimport torch.utils.data as Dataimport torch.nn as nnimport numpy as npimport torchvisionfrom torchvision import datasets,transforms#hyper parametersEPOCH = 80BATCH_SIZE=50LR = 0.0001tra
2020-07-26 21:49:22 582 2
原创 Sipakmed:a new dataset feature and image based classification of cervical cells——记一次复现论文经历(三)
Evaluation on sipakmed一、理论分析这一部分主要是说论文的评估策略。我第一次看以为这个5-folder是五个目录下的数据进行验证,太天真了。这里的5-folder cross validation是五折交叉验证的意思:把所有的数据等分为五份(因为是五折,如果是十折就是十份)每一次选这五份中的一份作为测试集,剩下的就是训练集直到每份都作为了一次测试集也就是说,所有的数据被训练了五次,最后用五次测试的平均精度来评估模型二、代码(纯python)数据集目录现
2020-07-26 21:48:25 643 1
原创 Sipakmed:a new dataset feature and image based classification of cervical cells——记一次复现论文经历(二)
3.2 Image Featurescell Features部分要用到SVM和MLP,我不太熟悉就先没做这个实验。这一部分说的是对Image Features的训练策略:包括网络、超参数、数据处理等。CNN网络:VGG19,输入:80*80损失函数:cross-entropy loss优化器:SGD超参数:batch_size = 50, lr = 0.0001数据增强:每一张图片 水平、垂直、水平垂直翻转后多了3张,也就是数据增强后的数据集总量是原来的4倍了。...
2020-07-26 21:47:44 657 7
原创 Sipakmed:a new dataset feature and image based classification of cervical cells——记一次复现论文经历
Sipakmed:a new dataset feature and image based classification of normal and pathological cervical cells in pap smear images论文链接数据集链接如果下载慢可以私信我。
2020-07-26 21:46:54 1247 4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人