快速幂(附例题)

快速幂

  • a^b%p。暴力做法是直接模拟,但是由于a和b的规模都达到了1e9,所以算a^b时会爆,用long long也不行。
  • 第一步优化:利用取模运算法则:
(a + b) % p = (a % p + b % p) % p (1(a - b) % p = (a % p - b % p ) % p (2(a * b) % p = (a % p * b % p) % p (3

观察第三条法则,我们可以借助这个法则对每一步都提前进行取模运算,这样就不会爆了。

  • 上述优化固然不会爆,但是算法时间复杂度是O(b),当b值很大时,运行效率仍然有进步空间。
  • 如果把b换成二进制呢?
    在这里插入图片描述
    以上由乘法结合律可知。
    由此我们可以根据b的二进制表示中当前位是1还是0决定要不要乘上这一项,但不管要不要乘上这一项,a都会变为a的平方,方便下一轮的b中下一个二进制位的计算。
  • 经过上面的优化,最终快速幂的时间复杂度就会变为O(logb)。

ACWING8989.a^b
求 a 的 b 次方对 p 取模的值。

输入格式
三个整数 a,b,p,在同一行用空格隔开。

输出格式
输出一个整数,表示a^b mod p的值。

数据范围
0≤a,b≤1090≤a,b≤109
1≤p≤1091≤p≤109
输入样例:

3 2 7

输出样例:

2

AC代码:

#include <bits/stdc++.h>
using namespace std;

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n;
    long long a,b,p,res;
    cin>>n;
    while(n--)
    {
        cin>>a>>b>>p;
        res=1;
        while(b)
        {
            if(b&1)res=res*a%p;
            b>>=1;
            a=a*a%p;
        }
        cout<<res<<'\n';
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值