题目链接:https://ac.nowcoder.com/acm/contest/886/H
题意:给定n和m代表n个点m条边,每条边的花费时间是1,再给出A集合和B集合,现在有三个人一个人在A集合的任意一个位置,一个人在B集合的任意一个位置,一个人在n个点中的任意一个位置,现在三个人要用最少的时间相遇,问三个人所需时间和的期望是多少。
数据范围:1<=n,m<=1e5,1<=Sa,Sb<=20
思路:先对A集合的人和B集合的人bfs,然后一对一对枚举A集合的人和B集合的人,对于n个点求出这两个人走到某个点的时间和,取最大的时间和为mx,对于0到mx分配点并对这些点i到i+1建边,然后还要将求出这些时间和的对应的点建边,这样从0时间再次开始bfs,这样从1到n的dis数组中存的数值就是三个人以最短路径到这个点的时间和(仔细思考一下就可以理解了),最后因为从新分配的点到原来的1到n的点连边的时候距离加了1,每次都加过1,所以最后用 (总时间-方案数)/方案数 就是答案了。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=3e5+5;
const int inf=0x3f3f3f3f;
int n,m,t;
vector<int>G[N];
int A[21],B[21],DIS[2][21][N];
void bfs(int x,int *dis,int sz){
queue<int>Q;
for(int i=1;i<=sz;i++)dis[i]=inf;
dis[x]=0;
Q.push(x);
while(!Q.empty()){
int u=Q.front();
int len=G[u].size();
Q.pop();
for(int i=0;i<len;i++){
int v=G[u][i];
if(dis[u]+1<dis[v]){
dis[v]=dis[u]+1;
Q.push(v);
}
}
}
}
ll solve(int u,int v){
int dis[N],mx=0;
for(int i=1;i<=n;i++)mx=max(mx,DIS[0][u][i]+DIS[1][v][i]);
for(int i=0;i<=mx;i++)G[n+1+i].clear();
for(int i=0;i<mx;i++)G[n+1+i].push_back(n+1+i+1);
for(int i=1;i<=n;i++)G[n+1+DIS[0][u][i]+DIS[1][v][i]].push_back(i);
bfs(n+1,dis,n+1+mx);
ll ans=0;
for(int i=1;i<=n;i++)ans+=dis[i];
return ans;
}
int main(){
scanf("%d",&t);int cas=0;
while(t--){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)G[i].clear();
int u,v;
for(int i=1;i<=m;i++){
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
for(int i=0;i<=A[0];i++)scanf("%d",&A[i]);
for(int i=0;i<=B[0];i++)scanf("%d",&B[i]);
for(int i=1;i<=A[0];i++)bfs(A[i],DIS[0][i],n);
for(int i=1;i<=B[0];i++)bfs(B[i],DIS[1][i],n);
ll mu=1ll*A[0]*B[0]*n;
ll zi=0;
for(int i=1;i<=A[0];i++)for(int j=1;j<=B[0];j++)
zi+=solve(i,j);
zi-=mu;
ll z=__gcd(zi,mu);
zi/=z,mu/=z;
if(mu==1)printf("Case #%d: %lld\n",++cas,zi);
else printf("Case #%d: %lld/%lld\n",++cas,zi,mu);
}
return 0;
}