Week10 B - LIS & LCS
东东有两个序列A和B。
他想要知道序列A的LIS和序列AB的LCS的长度。
注意,LIS为严格递增的,即a1<a2<…<ak(ai<=1,000,000,000)。
Input
第一行两个数n,m(1<=n<=5,000,1<=m<=5,000)
第二行n个数,表示序列A
第三行m个数,表示序列B
Output
输出一行数据ans1和ans2,分别代表序列A的LIS和序列AB的LCS的长度
Simple Input
5 5
1 3 2 5 4
2 4 3 1 5
Simple Output
3 2
解题思路
dp动态规划
LIS
fi=max ( fi | j < i ^ Aj < Ai )+1
LCS
初始化 f[0][1]=f[1][0]=f[0][0]=0
当 Ai=Bj 时 f[i][j]=f[i-1][j-1]+1
否则 f[i][j]=max(f[i-1][j] , f[i][j-1])
Code
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
int m,n;
int a[2][5010];
int aa[50100];
int b[2][5010];
int dp[5010];
int f[5010][5010];
int main(){
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d",&a[0][i]);
}
for(int i=1;i<=m;i++){
scanf("%d",&b[0][i]);
}
int ans=-1;
int anss;
for(int i=1;i<=n;i++){
dp[i]=1;
for(int y=1;y<i;y++){
if(a[0][y]<a[0][i]){
dp[i]=max(dp[i],dp[y]+1);
/*if(dp[i]<dp[y]+1){
dp[i]=dp[y]+1;
a[1][i]=y;
}*/
}
}
/*if(dp[i]>ans){
anss=i;
}*/
ans=max(dp[i],ans);
}
printf("%d ",ans);
/*aa[0]=a[0][anss]<<' ';
for(int i=0;i<ans-1;i++){
aa[i+1]=a[0][a[1][anss]];
anss=a[1][anss];
}
for(int i=ans-1;i>=0;i--){
cout<<aa[i];
//if(i!=0){
cout<<' ';
//}
}//cout<<endl;*/
ans=0;
f[0][1]=f[1][0]=f[0][0]=0;
for(int i=1;i<=n;i++){
for(int y=1;y<=m;y++){
if(a[0][i]==b[0][y]){
f[i][y]=f[i-1][y-1]+1;
//b[1][i]=i-1;
}else{
/*if(f[i-1][y]>f[i][y-1]){
b[1][i]=i-1;
}else{
b[1][i]=i;
}*/
f[i][y]=max(f[i-1][y],f[i][y-1]);
}
ans=max(ans,f[i][y]);
}
}
printf("%d",f[n][m]);
//cout<<ans<<endl;
/*for(int i=0;i<ans;i++){
cout<<b[0][ans]<<' ';
ans--;
}*/
}